Vector Relationships
These relationships are used in deriving the orbital equations, and are best understood by drawing vector triangles (see below). Here r denotes a vector, 
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a unit vector and r a length (magnitude). Derivatives w.r.t. time are denoted 
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and  denotes a small change.
See Murray and Dermott, CUP, 1999, chapter 2, for more information.

1) dr/dt
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By inspection of the above triangle, we have
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Dividing by t and taking the limit, we obtain
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a)
2) d
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Since 
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is a unit vector, its length is unity and does not change. So we have
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which gives us in turn
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3) 
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By similar triangles, we have
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Dividing by t and taking the limit, we obtain
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c)

4) d/dt (dr/dt) (i.e. 
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From a) we have 
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By taking the derivative of this w.r.t time we obtain


[image: image17.wmf]q

q

q

q

q

q

&

&

&

&

&

&

&

&

&

&

&

&

ˆ

ˆ

ˆ

ˆ

ˆ

r

r

r

r

r

r

r

r

+

+

+

+

=


Using b) and c) we obtain
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And collecting terms together, this finally gives us
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d)
The first term in equation d) is then related to the gravitational acceleration to obtain the orbital equations of motion.
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