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This paper presents the mathematics of the systematic bias in the expected value of the ratio of two noise-
corrected Poisson-distributed variables, such as ion counting measurements. Such bias can lead to the
reporting of incorrect ratios and, in some cases, systematic correlations with other measurements which
can impact the scientific interpretation. We describe a novel method of treating such measurements
which results in a negligible, exponentially small bias. We also re-examine the conventional approach
deriving an exact expression for the bias including the noise correction explicitly.

1 Introduction

Analysts measuring a time series of ion beam intensities are
faced with choices of how to process the data in order to esti-
mate intensity ratios. Is it preferable, for example, to calculate
the mean of the ratios, the ratio of the means or is there a better
approach entirely? At the heart of the problem is the fact that
the mean value a ratio estimator returns, over the long term, is
biased relative to the true ratio being estimated. A simple
example serves to illustrate the phenomenon of bias as follows.
Suppose we write a 1 and a 3 on the faces of coin A and a 3 and 5
on the faces of coin B. Clearly, the mean value of a coin ip is 2
and 4 for coins A and B respectively. We now ip the two coins
and record the ratio, B/A, as indicated by the upturned faces. In
such an experiment, there are four equally probable outcomes:
3/1, 3/3, 5/1, and 5/3. Hence, the expectation value of the ratio,
E(B/A) ¼ (3 + 1 + 5 + 5/3)/4 or 8/3. The expectation value of B/A is
the mean value of B/A over the long term. If we had hoped to
estimate the ‘true’ ratio equal to the ratio of the means for each
coin, 4/2 ¼ 2, then clearly the estimator B/A is biased. We dene
the bias as the relative difference between E(B/A) and the true
ratio. In this example, therefore, the bias is (8/3–2)/2 ¼ 1/3.

The situation with ratios of ion-counting signals in isotope
ratio measurements is directly analogous. The number of ions
counted is accurately modelled by Poisson statistics which
states that the probability of detecting X ions is given by

Pois(X;mx) ¼ e"mxmXx /X!, (1)

where mx is the population mean or expectation value of X. Note
that this single parameter, mx, characterises the Poisson

distribution. An analyst may wish to calculate an estimate of
mx/my, the ratio of the expectation values of two such signals, X
and Y. More generally, it is oen the case that analyte signals are
superposed on ‘noise’, whose origin may be in the detector
(dark noise), spectral or contamination during sample prepa-
ration. Regardless of origin the mean noise is oen assumed to
be constant, is determined empirically and the measured
signals corrected for its contribution. Let the mean noise
contribution to X and Y be mx0 and my0 respectively. The ratio to
be estimated, R, is, therefore, given by

R ¼
mx " mx0

my " my0

: (2)

In principal, any function, f (X,Y), may have it’s bias relative
to R determined by deriving the expectation valve, E ( f ), given
by the double summation over all X and Y of f (X,Y)$Pois(X;mx)$
Pois(Y;my). For example, the commonly used ratio estimator,

r0 ¼
X " mx0

Y " my0

; (3)

is considered in Section 2 but, even without detailed analysis, r0
is clearly problematic for any integer value of my0, including zero,
as E(r0) does not exist due to the non-zero probability of events
where the denominator, Y " my0, is zero. In Section 3 a novel,
quasi-unbiased ratio estimator is proposed, which is well
behaved for all Y and my0.

1.1 Previous work

Coakley et al.1 and Ogliore et al.2 have shown that X/Y is a biased
estimate of R. Similar approaches by both1,2 yield

E(X/Y) z mx/my(1 + 1/my + 2/m2y) (4)

in the limit of large my. As we shall show in Section 2, this
approximation holds providing Y ¼ 0 events are excluded from
the distribution. Noise correction is not considered explicitly
but, since the method used by these authors is rather general, it
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is straightforward to include it as a modication of the distri-
bution.Note that eqn (4) is not a solution to thebiasproblem, it is
only a means of estimating its magnitude. If it can be assumed
that my is constant then my, and hence the bias, may be estimated
and the ratio corrected but such a procedure lacks generality.

Ogliore et al.2 compare ratio estimators r1 ¼ !x/!y (the ‘ratio of
the means’) and r2 ¼ ðx=yÞ (the ‘mean of the ratios’) where
!x ¼ n"1Pn

i¼1xi, and !y ¼ n"1Pn
i¼1yi are the means of samples xi

and yi, and ðx=yÞ ¼ n"1Pn
i¼1ðxi=yiÞ by deriving expressions for

E(r1) and E(r2). Note, however, that these reduce to a single
problem as follows. Let xi and yi be instances of independent
random variables X and Y respectively where X has a Poisson
distribution with mean mx, which we shall write X % Pois(mx),
and similarly Y % Pois(my). Since the sum of Poisson variables is
itself a Poisson variable, we have n!x% Pois(nmx) and similarly for
n!y. With this nomenclature, E(r2) ¼ E(X/Y) and is given by
approximation 4 above and E(r1) has the same form with mx and
my replaced by nmx and nmy respectively (see Ogliore et al.2 eqn
(19) and (22)). The biases in r2 and r1 are, therefore, O(my"1) and
O{(nmy)"1} respectively. Note that both r1 and r2 have, to rst
order, biases proportional to the reciprocal of the mean number
of counts in the denominator when the ratio is taken.

Ogliore et al.2also considerBeale’s ratio estimator, r3, givenby

r3 ¼ r1

 
1þ covðx; yÞ=ðnx yÞ
1þ varðyÞ=ðny2Þ

!

(5)

where cov and var return the sample covariance and variance
respectively. Beale’s estimator reduces the bias to O{(nmy)"2}
but, in common with r1, all n data are reduced to a single value
so any true within-analysis variations in R, which may be of
interest, are obscured.

2 The ratio of noise-corrected Poisson
variables

We will assume that the distribution of the ion counts, X and Y,
obeys Poisson statistics. Furthermore, we will consider only
cases where X and Y are independent. This latter restriction is
not so severe as it might seem since by far the most important
correlated variations in ion counting signals are common mode
‘intensity’ uctuations, that is, proportional changes in both mx
and my which largely cancel by taking the ratio. Of course,
common mode variations will not be completely rejected on
account of any intensity dependence of the bias.

Let R be dened as given by eqn (2) and let Z be distributed
like Y but truncated at y0, that is, the probability distribution
function, Pr(Z), is given by

Pr
!
Z;my; y0

"
¼

#
0 for Z# y0

NPois
!
Z;my

"
for Z. y0

(6)

where N is a normalisation constant and y0 is an integer. To
satisfy

P
Pr(Z) ¼ 1 the normalisation constant required is

N ¼ y0!=gðy0 þ 1;myÞ ¼ 1=Pðy0 þ 1;myÞ

where g is the incomplete gamma function andP the normalised
incomplete gamma function.3 We shall choose y0 to be suffi-
ciently large to ensure Z " my0 cannot be zero or negative, i.e.

y0 $ Pmy0R:

Note that, in cases of large signal to noise ratio, the probability
of Y # my0 may be so small as to make excluding these events
notional in practice. We shall now derive an expression for the
expectation value of

r ¼
X " mx

0

Z " my
0

; (7)

which is the conventional expression for the noise-corrected
ratio but with rejections to avoid zeroes or negative values in the
denominator.

For independent random variables we can separate them
thus

EðrÞ ¼ EðX " mx
0
ÞE

$
1
.%

Z " my
0

&'

¼ ðmx " mx
0
ÞE

$
1
.%

Z " my0

&'

reducing the problem to one in a single variable, Z, so we can
drop the subscript y, i.e. my0 / m0 and my / m.

The Taylor series expansion of 1/(Z " m0) about m0 ¼ 0 is,

1=ðZ " m0Þ ¼ ð1=ZÞ
XN

k¼0

ðm0=ZÞ
k: (8)

Note that the truncation of the distribution ensures rm0/Zr <
1, guaranteeing convergence. To take the expectation value of
the right-hand side (RHS) of eqn (8) requires an expression for
the expectation value of 1/Zk. This problem is addressed in the
appendix and given by eqn (25). Substituting into eqn (8) gives,

E

$
1

Z " m0

'
¼ N

XN

k¼0

mk
0

XN

j¼kþ1

akþ1ð jÞ
m j

Pð y0 þ j þ 1;mÞ;

where coefficients ak ( j ) are given by eqn (26) (or, more conve-
niently for computationalpurposes,usinga1 ( j )¼ ( j"1)!,aj ( j )¼
1 and the recursion 11). Changing the order of the summation,

E

$
1

Z " m0

'
¼ N

XN

j¼1

Pðy0 þ j þ 1;mÞ
m j

Xj"1

k¼0

akþ1ð jÞmk
0 : (9)

The rst few values of ak(j) are,

j ¼ 1 2 3 4 5

a1(j) 1 1 2 6 24
a2(j) 1 3 11 50
a3(j) 1 6 35
a4(j) 1 10

From the exact form eqn (9), we can derive an asymptotic
form in the limit as m / N and bounded m0 by replacing the
innite sum with a nite sum, and using P ( y0 + j + 1,m) / 1,
which is true so long as y0 and j are also bounded. Hence,

E

$
1

Z " m0

'
¼
Xn"1

j¼1

1

m j

Xj"1

k¼0

akþ1ð jÞmk
0 þOð1=mnÞ (10)

Dene the bias, B(m,m0), as the relative difference between
E(1/(Z " m0)) and 1/(m " m0), i.e.
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B(m,m0) ¼ (m " m0)E(1/(Z " m0)) " 1.

Substituting from eqn (10) and aer some cancellation we
have

Bðm;m0Þ ¼
1

m

þ
Xn"1

j¼2

1

m j

 

j!þ
Xj"1

k¼1

!
mk
0ðakþ1ð j þ 1Þ " akð jÞÞ

"
þOð1=mnÞ

!

:

From eqn (27) it follows that

ak+1( j + 1) " ak( j ) ¼ jak+1( j ), (11)

hence

Bðm;m0Þ ¼
1

m
þ
Xn"1

j¼2

1

m j

 

j!þ j
Xj"1

k¼1

akþ1ð jÞmk
0

!

þOð1=mnÞ:

For example, putting n ¼ 3 we have

B ¼ 1/m + (2 + 2m0)/m
2 + O(1/m3) (12)

in agreement with Coakley et al.1 and Ogliore et al.2 for the case
m0 ¼ 0.

3 Quasi-unbiased ratios

Here we present an alternative ratio estimator which
reduces the bias to a factor which is exponentially small or
quasi-unbiased. Furthermore, the method does not require
truncation of the distribution so all the measured data can be
used.

Let Y be distributed as before. We dene a new random
variable,

Y 0(Y,m0) ¼ (Y + 1)/M(1,Y + 2,m0) (13)

where M(a,b,z) is the Kummer conuent hypergeometric func-
tion. The series expansion of M is4

Mða; b; zÞ ¼
XN

k¼0

ðaÞk
ðbÞkk!

z k (14)

where (a)k is the rising factorial or Pochhammer’s symbol,

ðaÞk ¼
#

1 for k ¼ 0
aðaþ 1Þðaþ 2Þ.ðaþ k " 1Þ for k ¼ 1; 2;.

Explicitly,

E(1/Y 0) ¼ (m " m0)
"1(1 " e"m + m0).

Proof. From eqn (13) the expectation value is given by

Eð1=Y 0 Þ ¼ e"m
XN

y¼0

my

y!
$
Mð1; yþ 2;m0Þ

ðyþ 1Þ

¼ e"m
XN

y¼0

ð1Þymy

ð2Þyy!
Mð1; yþ 2;m0Þ:

A summation of this form is given by Prudnikov et al.5 which is

XN

y¼0

ðb" aÞymy

ðbÞyy!
Mða; yþ b;m0Þ ¼ emMða; b;m0 " mÞ:

Substituting a / 1 and b / 2 gives,

XN

y¼0

ð1Þymy

ð2Þyy!
Mð1; yþ 2;m0Þ ¼ emMð1; 2;m0 " mÞ

¼ emðMð1; 1;m0 " mÞ " 1Þ=ðm0 " mÞ
¼ emð1" em0"mÞ=ðm" m0Þ

where we have used Gradshteyn and Ryzhik6 equation 9.212 and
M(1,1,z) ¼ ez.

Let B0 be the bias of E(1/Y 0) relative to (m " m0)"1,

B
0 ðm;m0Þ ¼ ðm" m0ÞEð1=Y

0 Þ " 1 ¼ "e"mþm0 :

Therefore, noise-corrected quasi-unbiased ratios, r0, can be
computed from measurements of Poisson events X and Y with,

r0 ðX ;Y Þ ¼
!
X " mx0

"

ðY þ 1Þ $M
%
1;Y þ 2;my0

&
: (15)

Using eqn (15) a ratio can be calculated at each cycle of data
collection and, if required, statistics on these such as the mean
and standard deviation. This contrasts using either the ratio of
the means, r1, or Beale’s estimator, r3, both of which return a
single ratio from a set of n measurements.

Fig. 1 compares conventional and quasi-unbiased ratios from
128 cycles of measurements on boron isotopes 10B and 11B. The
ion counts have been summed in ‘blocks’ of p cycles, the ratio
taken for each block and the mean over all blocks plotted. The
value of p, therefore, controls integration period and the total
number of blocks, q¼ 128/p. Let the total counts in each block be
xi and yi for the two isotopes, where i¼ 1,2,.q.Weuse p¼ 1,2,4,8
and 16 and plot the means of r0(xi,yi)(ty/tx) (red) and (xi/yi)(ty/tx)
(blue) against mean of 1/yi, where tx and ty are the cycle inte-
gration times for the two isotopes. The ‘ratio of the means’,
equivalent to putting p ¼ 128, is also shown and is indistin-
guishable from Beale’s estimator. The noise is negligible for
these data and has been set to zero. Both 11B/10B and its recip-
rocal are plotted to demonstrate that the effect is independent of
which isotope is chosenas thedenominator. Theplots show that,
to rst order and, as predicted by theory, the conventionally
processed data, shown in blue, plot as a straight line with equal
slope and intercept. The y-intercept, which corresponds to
counts / N, should equal the unbiased ratio. Our novel quasi-
unbiased ratio estimator (eqn (15)), shown by the red data have,
as expected, no bias regardless of the number of counts.

Fig. 2 shows the results of a Monte-Carlo simulation with
mx ¼ my ¼ 20 and noise from 0 to 15. The simulation shows the
noise-corrected ratio calculated in four ways: (i) conventionally
without data rejection (eqn (3)), (ii) conventionally with rejec-
tion when the denominator is zero or negative (eqn (7)), (iii)
Beale’s estimator, and (iv) quasi-unbiased (eqn (15)) all with
mx0 ¼ my0 ¼ b. The mean of 106 ratio estimations is plotted for
each value of the noise, which is incremented in steps of 0.01.
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The simulated quasi-unbiased ratios are closer to unity
(no bias) than either of the conventional ratios or Beale’s
estimator over the entire range of b, although
signicant scatter does occur for large b (see caption). Beale’s
estimator (eqn (5)) on the noise-corrected data requires, for
each of the 106 simulated ratio estimations, the variance,
covariance and mean intensities to be calculated. We calculate
these statistics from a dataset of n simulated data pairs, {xi,yi;
i ¼ 1.n}, and to make the comparison with the other esti-
mators fair we draw these from a Poisson distribution with
mean value 20/n, from which noise of b/n is subtracted. Beale’s
estimator is now

r3 ¼
n"1
Pn

i¼1 x
0
i

n"1
Pn

i¼1 y
0
i

1þ covðxi; yiÞ
n"1
Pn

i¼1 x
0
i

Pn
i¼1 y

0
i

1þ varðyiÞ
n"1

!Pn
i¼1 y

0
i

"2

0

BBB@

1

CCCA; (16)

where

x0
i ¼ xi " b/n (17)

and similarly for y0i. A value of n ¼ 10 is used for the simulation
of Fig. 2. A simplied variation on Beale’s estimator for Poisson
data, r03, which is independent of n, may be obtained by
substituting n / 1, cov(xi,yi) / 0, var(yi) / Y, x0i / X " b and
y0i / Y " b giving

r 0
3 ¼

0

B@
X " b

Y " bþ Y

Y " b

1

CA: (18)

These substitutions are arrived at by noting that, for inde-
pendent Poisson distributions, E{cov(X,Y)} ¼ 0 and E{var(Y)} ¼
E(Y). Simulations of both r3 and r03 are included in Fig. 2. Note

Fig. 1 Boron isotope ratios (a) 11B/10B and (b) 10B/11B as a function of the mean
number of counts per integration period showing the conventionally computed
ratios in blue and the novel quasi-unbiased ratios (eqn (15)) in red. Ratios are
calculated for each integration period in the analysis and the mean value plotted.
Note that the quasi-unbiased ratios (red) show no trend and give the desired
result regardless of the integration period. All plotted points are computed from
the same 128 cycles of data by summing the counts in blocks of p adjacent cycles
for p ¼ 1,2,4,8, and 16, dividing the analysis into 128/p integration periods. The
greatest bias in the blue data corresponds to p¼ 1which plots at the far right. The
‘ratio of the means’ is also shown (open blue symbol), which is equivalent to p ¼
128, close to Beale’s estimator (not shown) which lies below the open symbol in
both (a) and (b) by 0.0056% and 0.0035% respectively. See main text for further
details. Data are raw secondary-ion mass spectrometry (SIMS) data from an
analysis of a foraminifera using a CAMECA IMS 1270.

Fig. 2 Monte-Carlo simulation of (X " b)/(Y " b) (blue), (X " b)/(Z " b) (green),
Beale’s estimator (grey, see main text), simplified Beale’s estimator r03 (cyan, eqn
(18)) and the novel quasi-unbiased ratio, r0 (red, eqn (15)) with mx0 ¼ my0 ¼ b,
where X and Y are independent Poisson variables with means, mx and my, equal to
20 and Z ¼ Y for Y > b and rejected otherwise. For each data point the simulation
computes the mean over 106 samples. Rare single events where Y is small can
significantly shift the mean r0 for large values of b giving rise to the observed
scatter in the red data for b T 10. Black lines show the theoretical behaviour in
the cases of the green and red data. Much of the blue data are obscured behind
the green. The noise, b, is incremented in steps of 0.01.

Fig. 3 Variance of quasi-unbiased ratio, r0 (eqn (15)), divided by the variance of
r ¼ (X " b)/(Z " b) as a function of mean signal, mx ¼ my ¼ m, for relative noise, b/
m ¼ 0, 5% and 10% showing that the variance in r0 is always smaller than that of
the conventional ratio, r, over this range of parameters.
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that for zero noise, r03 ¼ X/(Y + 1), i.e. identical to r0 (eqn (15)),
and for b > 0 the (absolute) bias of r03 is marginally greater (more
negative) than that of r3.

Fig. 3 compares the variance of r0 (eqn (15)) with that of r (eqn
(7)) as a function of mean signal, mx ¼ my ¼ m, for three different
noise to signal ratios. Over the plotted parameter range the
variance of r0 is always the smaller (var(r0)/var(r) < 1) and,
therefore, more efficient ratio estimator.

4 Discussion

Quasi-unbiased ratios offer advantages over conventional
methods of calculating noise-corrected ratios of ion-counting
measurements, namely, (i) an exponentially small statistical
bias, (ii) no need to sacrice within-analysis information by
summing counts over entire analysis before taking the ratio, (iii)
insensitivity to common-mode changes in signal intensity, (iv)
no mathematical singularities, and (v) good stability even with
low signal to noise ratios (T2).

Ratio bias has increasing importance in isotope ratio
measurements since the scientic demands lead researchers to
strive for ever higher precisions on small quantities of sample.
This is particularly the case in secondary-ion mass spectrometry
(SIMS) where, because of low blanks, very low count rates are
acceptable. In studies on short-lived radionuclides (SLRs) (e.g.
see ref. 7–10) the bias is particularly insidious as it can give rise
to an apparent linear relationship between measurements of
the daughter nuclide and a proxy for the parent nuclide on a so-
called ‘isochron’ plot. To illustrate, consider the SLR 60Fe which
decays to 60Ni. A suite of measurements are made on phases
with a range of Fe/Ni ratios and an isochron plot is made of the
daughter, 60Ni, against the parent element, Fe. Both are plotted
as ratios using some stable isotope of Ni as the denominator. A
straight line with positive slope (the isochron) indicates that
60Fe was present at the time the Fe and Ni were fractionated
between the phases. It is sometimes the case that most or all of
the variation in Fe/Ni is controlled by the Ni content which,
since it appears in the denominator on both axes, will give rise
to a linear relationship in the data as a consequence of the bias,
adding to the positive slope due to in-growth of 60Ni. Huss
et al.11 have recently reported this problem with some of their
own published data on the Fe–Ni system concluding that in
some, but not all, samples their published estimates of initial
60Fe can no longer be distinguished from zero. They also
discuss the likely size of any corrections to other published work
on10Be, 26Al and 53Mn concluding that any changes to the
published conclusions are small except for one older study on
the Mn–Cr system in pallasites.

Note that, where internally normalised ratios are calculated,
i.e. where a third isotope is used to correct for mass-bias, the
magnitude of the statistical bias can increase or decrease,
depending on the relative mass differences, by propagation of
the bias of the normalising ratio. For example and assuming a
linear mass bias law, in the case of 60Ni/61Ni normalised to
62Ni/61Ni the statistical bias on 60Ni/61Ni increases by a factor of
two, whereas using 62Ni as the denominator the statistical bias
on 60Ni/62Ni stays the same magnitude but changes sign as it

does in the case of 26Mg/24Mg normalised to 25Mg/24Mg. For
53Cr/52Cr normalised to 50Cr/52Cr the statistical bias increases
by a factor of 1.5.

Studies where mass-bias correction is made by sample –
standard bracketing are potentially susceptible to statistical
bias in cases where there are differences in analyte concentra-
tion (ion count rate) between sample and standard. Standards
are usually chosen to have analyte concentrations high enough
that good precision can be achieved in a short time under the
same analytical conditions employed on the sample. Where ion
counts are higher on standards than samples and ratios are
calculated conventionally, the statistical bias will result in
systematically high ratios reported on samples corrected by
sample-standard bracketing. In short, sample-standard brack-
eting does not necessarily eliminate the bias.

Huss et al.11 rightly point out that ratio bias is a problem that
the community will have to be aware of to avoid this source of
systematic error in future work. However, we disagree that the
best solution is necessarily to sum the counts over the entire
analysis before taking the ratio (with or without using Beale’s
ratio estimator), or to correct for the bias based upon eqn (4) or
(12), for the reasons (i)–(v) given at the beginning of this
discussion, but rather to use eqn (15) to compute the ratio r0 at
each measurement cycle.

It may seem laborious to have to evaluate the Kummer
conuent hypergeometric function for every measurement cycle
but this should not be particularly so if (i) a good library of
special functions is available to the soware developers or (ii)
the signal to noise ratio is sufficiently high to be able to truncate
the innite series of eqn (14) to yield an approximate value for
M(1,Y + 2,m0). The truncation error, 3n, using an upper
summation limit of n " 1 in eqn (14) is given by,

3n ¼
XN

k¼n

mk
0

ðY þ 2Þk
: (19)

Let a ¼ m0/(Y + 2) be subject to the constraint 0 # a < 1. This
constraint is not severe: it is sufficient only that the signal is at
least as large as the mean noise (and both are positive). Since
(Y + 2)k $ (Y + 2)k we may write,

3n #
XN

k¼n

ak (20)

#
an

1" a
: (21)

Making n the subject of the inequality,

n$
logf3nð1" aÞg

logðaÞ : (22)

Therefore, if we wish to calculate M(1,Y + 2,m0) with a trun-
cation error no larger than n we can use

n ¼ Qlogfnð1" aÞg
logðaÞ

S (23)

and
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Mð1;Y þ 2;m0Þz
Xn"1

k¼0

mk
0

ðY þ 2Þk
: (24)

e.g. v ¼ 10"4, Y ¼ 10 and m0 ¼ 0.5 gives n ¼ 3 and truncation
error, 3n ¼ 6 ' 10"5, smaller than n as required.

Appendix
A.1 The expectation value of 1/Z l

For Z distributed as a truncated Poisson distribution (eqn (6))
we have

E
!
1=Zl

"
¼ N

XN

j¼l

alðjÞPðy0 þ j þ 1;mÞ
m j

(25)

where,

P(a,z) ¼ g(a,z)/(a " 1)! a ¼ 1,2,.

is the normalised incomplete gamma function and g is the
incomplete gamma function.3 The coefficients al( j) are given by
l " 1 nested summations

alð jÞ ¼ j!ð1=jÞ
Xj"1

j1¼l"1

ð1=j1Þ
Xj1"1

j2¼l"2

ð1=j2Þ.
Xjl"2"1

jl"1¼1

ð1=jl"1Þ (26)

or, alternatively, by al( j) ¼ j!bl( j) and the recursion

blþ1ð jÞ ¼
1=j for l ¼ 0;

ð1=jÞ
Pj"1

k¼lblðkÞ for l$ 1:

(
(27)

The proof of eqn (25) can be subdivided into proofs of

1=Zl ¼
XN

j¼l

alð jÞ
ðZ þ 1Þj

(28)

and

E
%
1=ðZ þ 1Þj

&
¼ N

m j
$Pðy0 þ j þ 1;mÞ (29)

where we have used Pochhammer’s symbol, (Z + 1)j ¼ (Z +
1)(Z + 2)/(Z + j ). The proof of eqn (29) yields easily as follows.
From the probability distribution function dened in eqn (6) it
follows that

E
%
1=ðZ þ 1Þj

&
¼ Ne"m

XN

z¼y0þ1

mz

ðzþ 1Þjz!

¼ Ne"m

m j

XN

z¼y0þ1

mzþj

ðzþ jÞ!

¼ N

m j

 

1" e"m
Xy0þj

z¼0

mz

z!

!

¼ N

m j
$Pðy0 þ j þ 1;mÞ

where we have used Aren12 equation 10.70 in the nal step
completing the proof.

Eqn (28) yields as follows. Denote

{p}j ¼ 1/(p)j.

Given integers s $ 0 and t $ s we have
X

s# z\t

fzþ 1gj ¼
%
fsþ 1gj"1 " ftþ 1gj"1

&.
ð j " 1Þ (30)

Proof: for s ¼ t, obviously RHS ¼ LHS ¼ 0. For t > s, by
induction on t " s using

RHSðs; tÞ "RHSðs; t" 1Þ ¼
%
ftgj"1 " ftþ 1gj"1

&.
ð j " 1Þ

¼
%
ðtþ j " 1Þftgj " tftgj

&.
ð j " 1Þ

¼ ftgj
¼ LHSðs; tÞ " LHSðs; t" 1Þ:Q:E:D:

Dene

hlð jÞ ¼
XN

jl"1¼jþ1

ð1=jl"1Þ
XN

jl"2¼jl"1þ1

ð1=jl"2Þ.
XN

j0¼j1þ1

ð1=j0Þfj0 þ 1gn;

(31)

that is, l nested summations where each lower limit is the next
outer summation variable. We have explicitly

hl( j) ¼ 1/nl{j + 1}n (32)

Proof: by induction on l. From the denition (eqn (31))
follows the recursion

hlð jÞ ¼
#

f j þ 1gn for l ¼ 0;PN
k¼jþ1hl"1ðkÞ=k for l$ 1: (33)

The result is trivial for l ¼ 0; for l > 0, substituting the RHS
value for hl"1(k) (eqn (32)) into the recursion (eqn (33)),

hlð jÞ ¼
XN

k¼jþ1

1=n l"1fk þ 1gn=k ¼ 1=n l"1
XN

k¼jþ1

fkgnþ1

¼ 1=nlf j þ 1gn

using eqn (30) with t / N, s / j, and j / n + 1.Q.E.D.
Changing the order of summation and combining eqn (31)

and (32) gives

f j þ 1gn=nl ¼
PN

j0¼jþl

ð1=j0Þf j0 þ 1gn
Pj0"1

j1¼jþl"1

ð1=j1Þ

Pj1"1

j2¼jþl"2

ð1=j2Þ.
Pjl"2"1

jl"1¼jþ1

ð1=jl"1Þ:

with j / 0 and substituting using the identity
n!f j0 þ 1gnhj0!=ðnþ 1Þj0 ,

1=nl ¼
PN

j0¼l

j0!ð1=j0Þ=ðnþ 1Þj0
Pj0"1

j1¼l"1

ð1=j1Þ

Pj1"1

j2¼l"2

ð1=j2Þ.
Pjl"2"1

jl"1¼1

ð1=jl"1Þ:

With n / Z this completes the proof of eqn (28) and, hence,
also of eqn (25).
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