Announcements

Field trip 1 conflicts: April 22-23 vs. April 29-30

Reading: p. 46-47 (Lab: Chapter 2 and 3; optical mineralogy book)

Homework 1 should be ready soon

Today's topics:

• Pressure as a function of depth in the Earth

• Geothermal gradients

Mechanisms for generating melt in tectonic settings

Hydrostatic and lithostatic pressure

The Pressure Gradient

- P increases = ρ gh
- Nearly linear through mantle
 - ~ 30 MPa/km
 - \approx 1 GPa at base of ave crust
- Core: ρ incr. more rapidly since alloy more dense

Converting pressure and depth units

- 1 GPa = 10 kbar = 1000 MPa
- 1 GPa/35 km
- About 3 kbar/km
- Example of how we will use these conversions:

Measuring the temperature as a function of depth

- What do you expect the temperature profile of Earth (geothermal gradient) to look like?
- How could we make measurements of temperature as a function of depth?

LJ

The geothermal gradient

- ~25°C / km near surface
- Oceanic geotherm "cooler" than continental geotherm
- ~0.3°C / km mantle below 200-250 km
- Why is geothermal gradient so much steeper in crust?

From Winter, Intro to Igneous and Metamorphic Petrology

Heat Sources in the Earth

- 1. Heat from the early accretion and differentiation of the Earth
 - still slowly reaching surface
- 2. Heat released by the radioactive breakdown of unstable nuclides

0.2 cal/g/yr for $^{\rm 40}{\rm K}$

Radiogenic isotopes: important production of heat in the crust

U, Th, K

• How do these elements partition between minerals (olivine, pyroxene) and melt?

K heat generation ~100x greater in crust than in mantle

Mechanisms for transfer of heat

- 1. Conduction: transfer of kinetic (vibrational) energy
- 2. Convection: movement of material
- 3. Advection: passive transfer of heat with rocks that are already in motion
- 4. Radiation: transfer energy with lightneed to be translucent or transparent!

Which apply to the Earth?

The Geothermal Gradient

Pattern of global heat flux variations compiled from observations at over 20,000 sites and modeled on a spherical harmonic expansion to degree 12. From Pollack, Hurter and Johnson. (1993) Rev. Geophys. 31, 267-280.

Cross-section of the mantle based on a seismic tomography model. Arrows represent plate motions and large-scale mantle flow and subduction zones represented by dipping line segments. EPR =- East pacific Rise, MAR = Mid-Atlantic Ridge, CBR = Carlsberg Ridge. Plates: EA = Eurasian, IN = Indian, PA = Pacific, NA = North American, SA = South American, AF = African, CO = Cocos. From Li and Romanowicz (1996). J. Geophys. Research, 101, 22,245-72.

Convection in action

• Water on stove Tectonic plates on mantle

More Specific Convection Diagram

Mechanisms for transfer of heat

- 1. Conduction: transfer of kinetic (vibrational) energy
- 2. Convection: movement of material
- 3. Advection: passive transfer of heat with rocks that are already in motion
- 4. Radiation: transfer energy with lightneed to be translucent or transparent!

Cross-section of the mantle based on a seismic tomography model. Arrows represent plate motions and large-scale mantle flow and subduction zones represented by dipping line segments. EPR =- East pacific Rise, MAR = Mid-Atlantic Ridge, CBR = Carlsberg Ridge. Plates: EA = Eurasian, IN = Indian, PA = Pacific, NA = North American, SA = South American, AF = African, CO = Cocos. From Li and Romanowicz (1996). J. Geophys. Research, 101, 22,245-72.

Ways to instigate melting (phase change)

- 1. Heat something up (melt butter on stove)
- 2. Add something to lower the melting temperature (add salt to ice)
- 3. Decompress (shaving cream, liquid nitrogen)

Match these processes to where they occur in the Earth

Plate Tectonic - Igneous Genesis

- 1. Mid-ocean Ridges
- 2. Intracontinental Rifts
- 3. Island Arcs
- 4. Active Continental Margins

- 5. Back-arc Basins
- 6. Ocean Island Basalts
- 7. Miscellaneous Intra-Continental

Activity

 kimberlites, carbonatites, anorthosites...

Summary of important points

- Pressure gradient and conversion between pressure and depth
- Thermal gradient and heat sources in Earth
- Generation of melts in tectonic settings