#### Announcements

Reading: p.120-127; p.293-304; p.316-318
Download HW 1 from web: due April 17
Field trip 1 is definitely April 29-30

#### Water: effect on viscosity



### Water, bubbles, crystals

- Water lowers viscosity
- Also causes crystallization at lower T: increases viscosity – (demo 2)
- Bubbles formincreases viscosity



### Important Ideas

- Silicate melts have open structures and local ordering
  - can accommodate many volatiles, large cations, noble gases
- Typical densities: 2.2-3.1 g/cm<sup>3</sup>
- Typical viscosities - 500-1,000,000 poise
- Water, bubbles, crystallization, and T all affect melt viscosity

# How do we measure and record composition?

 Bulk composition: want to know composition of original melt

• Bulk composition is easier to measure on some samples than on others (example)

#### Measurement of bulk composition 1. chemical composition

- Most common analysis until 60's
- Wet chemistry: dissolve rock in acids
- Precipitate oxides of each cation and weigh material





# Bulk composition with XRF: sample preparation







Or just press a pellet...

### XRF: principles of technique



### **XRF: principles of technique**



Use this to quantify # atoms of each element: then convert to oxides!

Other bulk measurement methods mentioned in text?

#### Results: convert everything to wt% oxides!

| Table 8-3. Chemical analyses of some |            |        |          |          |           |  |  |  |  |
|--------------------------------------|------------|--------|----------|----------|-----------|--|--|--|--|
| representative igneous rocks         |            |        |          |          |           |  |  |  |  |
|                                      | Peridotite | Basalt | Andesite | Rhyolite | Phonolite |  |  |  |  |
| SiO <sub>2</sub>                     | 42.26      | 49.20  | 57.94    | 72.82    | 56.19     |  |  |  |  |
| TiO <sub>2</sub>                     | 0.63       | 1.84   | 0.87     | 0.28     | 0.62      |  |  |  |  |
| $AI_2O_3$                            | 4.23       | 15.74  | 17.02    | 13.27    | 19.04     |  |  |  |  |
| $Fe_2O_3$                            | 3.61       | 3.79   | 3.27     | 1.48     | 2.79      |  |  |  |  |
| FeO                                  | 6.58       | 7.13   | 4.04     | 1.11     | 2.03      |  |  |  |  |
| MnO                                  | 0.41       | 0.20   | 0.14     | 0.06     | 0.17      |  |  |  |  |
| MgO                                  | 31.24      | 6.73   | 3.33     | 0.39     | 1.07      |  |  |  |  |
| CaO                                  | 5.05       | 9.47   | 6.79     | 1.14     | 2.72      |  |  |  |  |
| Na <sub>2</sub> O                    | 0.49       | 2.91   | 3.48     | 3.55     | 7.79      |  |  |  |  |
| K <sub>2</sub> O                     | 0.34       | 1.10   | 1.62     | 4.30     | 5.24      |  |  |  |  |
| H <sub>2</sub> O+                    | 3.91       | 0.95   | 0.83     | 1.10     | 1.57      |  |  |  |  |
|                                      |            |        |          |          |           |  |  |  |  |
| Total                                | 98.75      | 99.06  | 99.3     | 99.50    | 99.23     |  |  |  |  |

Major elements: usually greater than 1% SiO<sub>2</sub> Al<sub>2</sub>O<sub>3</sub> FeO\* MgO CaO Na<sub>2</sub>O K<sub>2</sub>O H<sub>2</sub>O Minor elements: usually 0.1 - 1%

 $TiO_2$  MnO  $P_2O_5$   $CO_2$ 

Trace elements: usually < 0.1%

everything else

#### Conversion of units

• How to convert wt% oxides to mol?

| -                              | -     | -       |            |        |
|--------------------------------|-------|---------|------------|--------|
| Oxide                          | Wt. % | Mol Wt. | Atom Prop. | Atom % |
| SiO <sub>2</sub>               | 49.2  | 60.09   | 0.82       | 17.21  |
| TiO <sub>2</sub>               | 2.03  | 79.88   | 0.03       | 0.53   |
| $AI_2O_3$                      | 16.1  | 101.96  | 0.32       | 6.64   |
| Fe <sub>2</sub> O <sub>3</sub> | 2.72  | 159.70  | 0.03       | 0.72   |
| FeO                            | 7.77  | 71.85   | 0.11       | 2.27   |
| MnO                            | 0.18  | 70.94   | 0.00       | 0.05   |
| MgO                            | 6.44  | 40.31   | 0.16       | 3.36   |
| CaO                            | 10.5  | 56.08   | 0.19       | 3.93   |
| Na <sub>2</sub> O              | 3.01  | 61.98   | 0.10       | 2.04   |
| K <sub>2</sub> O               | 0.14  | 94.20   | 0.00       | 0.06   |
| $P_2O_5$                       | 0.23  | 141.94  | 0.00       | 0.07   |
| $H_2O^+$                       | 0.70  | 18.02   | 0.08       | 1.63   |
| H <sub>2</sub> O <sup>-</sup>  | 0.95  | 18.02   | 0.11       | 2.22   |
| (0)                            |       |         | 2.82       | 59.27  |
| Total                          | 99.92 |         | 4.76       | 100.00 |
|                                | ppm   |         |            | ppm    |
| Ba                             | 5     | 137.33  | 0.04       | 0.8    |
| Co                             | 32    | 58.93   | 0.54       | 11.4   |
| Cr                             | 220   | 52.00   | 4.23       | 88.9   |
| Ni                             | 87    | 58.70   | 1.48       | 31.1   |
| Pb                             | 1     | 207.20  | 0.01       | 0.1    |
| Rb                             | 1     | 85.47   | 0.01       | 0.3    |
| Sr                             | 190   | 87.62   | 2.17       | 45.6   |
| Th                             | 0     | 232.04  | 0.00       | 0.0    |
| U                              | 0     | 238.03  | 0.00       | 0.0    |
| V                              | 280   | 50.94   | 5.50       | 115.5  |
| Zr                             | 160   | 91.22   | 1.75       | 36.9   |

Table 8-1. Chemical Analysis of a Basalt

(Mid-Atlantic Ridge)

Data from Carmichael et al. (1974), p. 376, col. 1

# Mass balance: bean-counting Α С B

[X] = 5/25 = 0.2 [X] = 3/6 = 0.5 [X] = 2/19 = 0.11

 $A[X]_A = B[X]_B - C[X]_C$ 

Geochemists count beans all the time!

# Measurement of bulk composition 2. mineralogy

- Mode is the volume % of minerals seen
- Norm is a calculated "idealized" mineralogy based on a set protocol for assigning oxides to mineral species "CIPW Norm"

|                  | Fo   | En   | Q   |
|------------------|------|------|-----|
| SiO <sub>2</sub> | 42.7 | 59.9 | 100 |
| MgO              | 57.3 | 40.1 |     |

#### Measurement of bulk composition

 Point counting of thin sections: modal abundance

Looks like fun?

Mode = norm ?



## Naming igneous rocks

• Nomenclature out of control

– How to effectively communicate correct information to others?

• In 60's and 70's IUGS made standard charts to determine igneous rock names

| Adakite    |
|------------|
| Adamellite |
| Alaskite   |
| Alnöite    |
| Alvekite   |

Andesite Ankaramite Anorthosite Aplite Basalt Basanite Beforsite Benmoreite Boninite Camptonite

Cancalite

Cedricite

**Carbonatite** 

Charnockite

Comendite

Cortlandite

#### Examples of determining nomenclature

- 1. Volcanic rock or plutonic?
- 2. Normative mineralogies (modal)
  - 1. Q = quartz
  - 2. A = alkali feldspar
  - 3. F = feldspathoids
  - 4. M = mafic minerals

Example: Q 5% A 15% P 30%



#### Examples of determining nomenclature

 Intrusive: separate modal plots

Include modifiers, if appropriate:

"Biotite granite"

"Hypidiomorphic quartz syenite"



#### Volcanic rock: chemical composition



#### More nomenclature

- Peraluminous A>CNK
- Metaluminous CNK>A>NK
- Peralkaline NK>A
  - A,C,N,K are molecular amounts of  $Al_2O_3$ , CaO, Na<sub>2</sub>O, K<sub>2</sub>O
- Silica saturation and undersaturation: figure 8-12

#### Crater Lake, OR

Deepest lake in N.



Eruption 7000 years b.p. reduced 12000 ft (3700 m) tall mountain to caldera about 6100 ft above sea level





Topinka, USGS/CVO, 2001; Modified from: Bacon, et.al., 1997, USGS Open–File Report 97-487; Map Data Source: C. R. Bacon, unpublished mapping, 1996; some features from: U. S. National Park Service Map

#### Harker diagrams for Crater Lake

What features do you observe in these diagrams?

(X, Y, data clusters)

Primitive vs. evolved magmas

Figure 8-2. Harker variation diagram for 310 analyzed volcanic rocks from Crater Lake (Mt. Mazama), Oregon Cascades. Data compiled by Rick Conrey (personal communication).



# The Daly Gap

- Fractional crystallization?
- Partal magma mixing?
- Oxide crystallization?



#### Harker diagram for Crater Lake

Describe trends qualitatively with fractional crystallization

- Trends = liquid line of descent
- The most primitive lava on the diagram is the parent magma
- What phases typically crystallize from magmas?
- Adjust % of remaining components (Na, K)

**Figure 8-2.** Harker variation diagram for 310 analyzed volcanic rocks from Crater Lake (Mt. Mazama), Oregon Cascades. Data compiled by Rick Conrey (personal communication).



# Summary of important points

- Rock compositions are generally expressed in wt% oxides for historical reasons
- Conversion between units
- Mode vs. norm
- IUGS diagrams and other chemical composition diagrams allow us to have a standard nomenclature
- Harker diagrams