Announcements

- •Reading for Monday: p.46-59 (field trip)
- •Homework 4 is due next Wed
- •Deal with midterms today
- •Also with questions about HW3

Dehydration reactions in a subducting slab

- What minerals are present in top/middle of oceanic lithosphere before subduction?
- Clays, micas, carbonates, sulfates, amphiboles (as P increases)

$Mg_7Si_8O_{22}(OH)_2 = 7MgSiO_3 + SiO_2 + H_2O$

The effect of adding a little water to the mantle wedge

- Induce melting simply by adding water, instead of increasing temperature
- A few wt% of water has a larger affect than a few wt% of common cations.
- $H_2O = 18.01$
- FeO = 71.85
- OR, PERIDOTITE DIAGRAM

Isotopes

Same Z, different A (variable # of neutrons) General notation for a nuclide: ${}^{14}_{6}C$

Isotopes and our subatomic friends

Protons "make" the element!

Nuclei with the same number of protons but different number of neutrons are ISOTOPES

19 protons

40-19 = 21 neutrons

Usually leave out atomic number when writing

39
 K 41 K

Radioactive Isotopes

- Unstable isotopes decay to other nuclides
- The rate of decay is constant, and not affected by P, T, X...
- Parent nuclide = radioactive nuclide that decays
- Daughter nuclide(s) are the radiogenic atomic products

Note: a given element can have both radiogenic and stable isotopes

Radioactive decay

Products: energetic particles (can be dangerous) and a different element

Setup to calculate a date

Need a good isotope system for what you are trying to date (time, availability)

Daughter	Half Life	Useful for
⁸⁷ Sr	48.6 Ga	10 Ma – 4.6
²⁰⁸ Dh	14 00	Ga 10 Ma – 4.6
PD	14 Ga	Ga
²⁰⁶ Pb	4.5 Ga	10 Ma – 4.6
10		Ga
⁴⁰ Ar	1.3 Ga	100,000 yr -
007		4.6 Ga
²⁰⁷ Pb	700 Ma	10 Ma – 4.6
		Ga
^{14}N	5,730 y	50,000 yr -
		now
	U	 ⁸⁷Sr 48.6 Ga ²⁰⁸Pb 14 Ga ²⁰⁶Pb 4.5 Ga ⁴⁰Ar 1.3 Ga ²⁰⁷Pb 700 Ma

Radioactive Decay

The Law of Radioactive Decay

Sr-Rb System

- ${}^{87}\text{Rb} \rightarrow {}^{87}\text{Sr} + a \text{ beta particle } (\lambda = 1.42 \text{ x } 10^{-11} \text{ a}^{-1})$
- Rb behaves like $K \rightarrow$ micas and alkali feldspar
- Sr behaves like Ca → plagioclase and apatite (but not clinopyroxene)
- ⁸⁶Sr is a stable isotope, and not created by breakdown of any other parent

Isochron Technique

Requires 3 or more cogenetic samples with a range of Rb/Sr

Could be:

- 3 cogenetic rocks derived from a single source by partial melting, FX, etc.
- 3 coexisting minerals with different K/Ca ratios in a single rock
- Chemical vs. massdependent fractionation

Recast age equation by dividing through by stable ⁸⁶Sr

 87 Sr/ 86 Sr = (87 Sr/ 86 Sr)_o + (87 Rb/ 86 Sr)($e^{\lambda t}$ -1) $\lambda = 1.4 \times 10^{-11} a^{-1}$

$$y = b + x m$$

For values of λt less than 0.1: $e^{\lambda t} - 1 \cong \lambda t$

Begin with 3 rocks (or mineral separates) plotting at a b c at time t_o

After some time increment $(t_0 \rightarrow t_1)$ each sample loses some ⁸⁷Rb and gains an equivalent amount of ⁸⁷Sr

At time t_2 each rock or mineral system has evolved \rightarrow new line

Again still linear and steeper line

Isochron technique produces 2 valuable things:

1. The age of the rocks (from the slope = λt)

2. $({}^{87}Sr/{}^{86}Sr)_0$ = the initial value of ${}^{87}Sr/{}^{86}Sr$

Rb-Sr Isochron, Eagle Peak Pluton, Sierra Nevada Batholith

Figure 9-9. Rb-Sr isochron for the Eagle Peak Pluton, central Sierra Nevada Batholith, California, USA. Filled circles are whole-rock analyses, open circles are hornblende separates. The regression equation for the data is also given. After Hill et al. (1988). Amer. J. Sci., 288-A, 213-241.

Important values of (87Sr/86Sr)o

- "Depleted Mantle" $({}^{87}Sr/{}^{86}Sr)_{o} = 0.704$
- Island arcs: (⁸⁷Sr/⁸⁶Sr)_o ~ 0.703 0.708
- Continental crust: 0.703 0.720 or more
- Sediments: (⁸⁷Sr/⁸⁶Sr)_o > 0.710
- (⁸⁷Sr/⁸⁶Sr)_o >0.706: indicates continental crustal assimilation into magma
- Why?