Announcements

- •Reading for today: p.242-251; p.182-185
- •Reading for Fri: p.105-116
- •Turn in Field Notes for LV trip on Friday
- •Homework 5 is on the web; due May 31

Mantle composition and mineralogy

- What is the composition of the (upper) mantle?
- What mineral phases are stable in the (upper) mantle?
- Why do we care about the answers to the first two questions?

Sources of mantle material

- Ophiolites
 - Slabs of oceanic crust and upper mantle
 - Thrust at subduction zones onto edge of continent
- Dredge samples from oceanic fracture zones
- Nodules and xenoliths in some basalts
- Kimberlite xenoliths
 - Diamond-bearing pipes blasted up from the mantle carrying numerous xenoliths from depth

Composition of the upper mantle

	spinel	garnet	abyssal		
	Iherzolites	Iherzolites	peridotites		
SiO ₂	44.2	46.1	43.6		
TiO ₂	0.13	0.12	0.02		
AI_2O_3	2.1	1.2	1.2		
FeO	8.3	7.2	8.2		
MgO	42.4	43	45.2		
CaO	1.9	0.8	1.1		
Na ₂ O	0.27	0.1	0.02		
K ₂ O	0.06	0.04	0		
NiO	0.28	0.29	0		
Cr_2O_3	0.44	0.37	0		

Come back to this later... mantle melting

Mantle mineralogy

• What minerals do we see in xenoliths?

Composition of the upper mantle

	OI	Орх	Di	Spinel	Gt	Plag
Spinel Lherzolites	80	10	8	2		
Garnet Lherzolites	63	30	2		5	
Abyssal peridotites	74.8	20.6	3.6	0.5		0.9

Mantle mineralogy

Plag-spinel-garnet lherzolites

- Understanding change in mineralogy with depth
- Density, crystal structure

```
Anorthite = 2.76
Spinel = 3.55
Pyrope gt = 3.582
```


Experimental Petrology

Experimental Petrology

- P = F/A
- 3-4 GPa

Oceanic Crust and Upper Mantle Structure

Layer 1

A thin layer of pelagic sediment

Figure 13-4. Modified after Brown and Mussett (1993) The Inaccessible Earth: An Integrated View of Its Structure and Composition. Chapman & Hall. London.

Lithology		Ocean Crustal Layers	Typical Ophiolite Normal Ocean Crust		
			Thickne	ss (km) ave.	P wave vel. (km/s)
Deep-Sea Sediment		1	~ 0.3	0.5	1.7 -2.0
Basaltic Pillow Lavas		2A & 2B	0.5	0.5	2.0 - 5.6
Sheeted dike complex		2C	1.0 - 1.5	1.5	6.7
Gabbro		ЗА	0.5	47	71
Layered Gabbro		3В	2-5	4.7	7.1
Layered peridotite					
Unlayered tectonite peridotite		4	up to 7		8.1

Oceanic Crust and Upper Mantle Structure

Layer 2 is basaltic

Subdivided into two sub-layers

Layer 2A & B = pillow basalts

Layer 2C = vertical sheeted dikes

Figure 13-4. Modified after Brown and Mussett (1993) The Inaccessible Earth: An Integrated View of Its Structure and Composition. Chapman & Hall. London.

Lithology		Ocean Crustal Layers	Typical Ophiolite Normal Ocean Crust		
			Thickness (km)		P wave
Deep-Sea Sediment		1	~ 0.3	0.5	1.7 -2.0
Basaltic Pillow Lavas		2A & 2B	0.5	0.5	2.0 - 5.6
Sheeted dike complex		2C	1.0 - 1.5	1.5	6.7
Gabbro		ЗА	0.5	47	71
Layered Gabbro		3В	2-5	4.7	7.1
Layered peridotite					
Unlayered tectonite peridotite		4	up to 7		8.1

Layer 3 more complex and controversial Believed to be mostly gabbros, crystallized from a shallow axial magma chamber (feeds the dikes and basalts)

Layer 3A = upperisotropic and lower, somewhat foliated ("transitional") gabbros Layer 3B is more layered, & may exhibit cumulate textures

Lithology		Ocean Crustal Layers	Typical Ophiolite Normal Ocean Crust		
			Thickness (km)		P wave vel. (km/s)
Deep-Sea Sediment		1	~ 0.3	0.5	1.7 -2.0
Basaltic Pillow Lavas		2A & 2B	0.5	0.5	2.0 - 5.6
Sheeted dike complex		2C	1.0 - 1.5	1.5	6.7
Gabbro		ЗА	2.5	47	71
Layered Gabbro		3В	2-3		7.1
Layered peridotite			T.		
Unlayered tectonite peridotite		4	up to 7		8.1

- Layer 4 = ultramafic rocks
- Ophiolites: base of 3B grades into layered cumulate wehrlite & gabbro
- Wehrlite intruded into layered gabbros
- Below \rightarrow cumulate dunite with harzburgite xenoliths
- Below this is a tectonite harzburgite and dunite (unmelted residuum of the original mantle)

Lithology

Typical

Thickness

Summary of important points

- Mantle composition
- •Mantle mineralogy
- Experimental petrology
- •Ophiolite stratigraphy