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“Make things as simple as possible, but no simpler.”
(Attributed to A. Einstein)

1. INTRODUCTION

Impact processes have shaped the solar system since its early beginnings.
They are an inevitable consequence of the myriad of bodies of all sizes
traveling through the same regions of space at velocities of tens of kilo-
meters per second, and the gravitational attractions between those bodies.
Theresults of impact processes are readily apparent in almost every image
of bodies in our solar system, and are recognized as one of the most
important geological processes determining the morphology of those sur-
faces. The observation of those surfaces is one of the most important
remote sensing procedures for understanding the history and evolution of
the solar system.

To make use of this unique sensing system requires an understanding
and quantification of the processes of impacts. How do the observed shape
and size of an impact crater depend on the underlying geology? How do
they depend on the size, composition, and velocity of the impactor? What
is the size distribution of the remnants of a catastrophic disruption of a
body? How can one meaningfully study those processes?

This article reviews ‘“‘scaling laws’’ for impact processes, an approach
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used to study these questions. It presents current approaches, not an
historical summary; the older approaches are only briefly mentioned in
passing. The interested reader may consult the book by Melosh (1989) for
mention of some of the older approaches, as well as for discussions of the
mechanics of shock processes and cratering. Here the restriction of space
allows only a presentation of the simplest concepts and first order theories
that are the most determined; extensions to topics such as atmospheric
effects, oblique impacts, time-dependent creep, and modification are only
mentioned in passing.

What exactly is meant by the scaling of impact events, and by scaling
laws? By scaling we mean to apply some relation, the scaling law, to predict
the outcome of one event from the results of another, or to predict how
the outcome depends on the problem parameters. The parameters that are
different between the two events are the variables that are scaled. Most
often these are the size scale or the velocity scale, but they can also include
other parameters including a gravitational field or a material strength.

As an example, consider some easily quantified measure of the outcome
of an impact such as the radius R of a crater resulting from an impact into
a planet of a hypervelocity body with radius a and velocity U, of a known
matcrial. The crater radius depends, among other things, on the impactor
size and velocity:

R = f(a, U).

The fundamental goal of scaling studies is to measure, guess, derive, or
otherwise determine the form of such a function, the scaling law, giving
the dependence of the outcome of a hypervelocity impact on the size,
velocity, or other conditions of the problem.

A number of questions can be raised about such scaling laws. Clearly
they result from complex processes involving the balance equations of
mass, momentum, and energy of continuum mechanics and the consti-
tutive equations of the materials. The impact processes encompass the
gamut of pressures—from many megabars where common solids act like
fluids, to near zero where material strength or other retarding actions limit
the final crater growth. Must scaling laws be power laws? Why should any
such simple algebraic result be expected for such complex phenomena? If
not, when are exceptions to be expected, and what form is appropriate in
those cases?

Possible approaches to determining such scaling laws include experi-
ments, analytical solutions to the governing equations, or codc calculations
using those same equations. Each approach has its uses but also its
deficiencies, as are now summarized.
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1.1 Experiment of Impacts

Experiments are severely limited by the shortcomings of existing testing
techniques. There are no well characterized techniques to launch com-
petent compact projectiles at speeds in excess of about 8 km/sec, well
below the several tens of km/sec of primary interest in the solar system.
Further, only gram-sized projectiles can be launched at those speeds. Thus,
one cannot test models large enough to be governed by the same physical
processes as those for the ubiquitous kilometer-sized craters on solar
system bodies. For meter-sized or smaller craters in geological materials
the physical processes of cratering or of catastrophic disruption are
governed by material strengths of the parent body. In contrast, processes
responsible for kilometer-sized craters and bodies are primarily governed
by gravitational forces. Experiments in the laboratory do not model the
right physics forlarge craters. The analogy is similar, but even more severe,
to attempting to predict the response of a large airplane by conducting
tests on small models thrown at hand-launched speeds: The model does
not have the right Reynolds number due to deficiencies in both speed and
size. Large bodies do not have the simple laminar flow of small ones. For
cratering, it is the Froude number—the ratio of dynamic to gravitational
pressures—that governs the physics of large craters. Experiments typically
have a Froude number several decades too large. As a consequence, lab-
oratory experiments have limited usefulness in predicting the outcomes of
impacts at planetary scales.

1.2 Calculations of Impacts

The physical laws that govern impacts are well known: the balance of
mass, momentum, and energy, augmented by the constitutive laws for
the materials involved. In theory one could solve those equations with
appropriate numerical techniques (e.g. using the finite difference methods
of the so-called hydrocodes) to determine how the outcome of an impact
process is related to the defining conditions. However we lack the ability
to define and correctly model the diverse material behavior over the wide
range of conditionsinvolved: Processes can begin with hundreds of mega-
bars of pressure and millions of degrees of temperature, where all materials
behave roughly as a gas, and subsequently decay to less than bars of
pressure where the models of rock and soil mechanics are necessary. Even
if we knew how to model this behavior in principle, we often have very
imprecise knowledge of the material in question. Furthermore, from the
results of a single or even multiple code runs, it is almost impossible to see
the forest for the trees: It is difficult to determine fundamental dependences
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of the outcome on the parameters of interest, or how they are interrelated.
Consequently, while code calculations can be very instructive, one needs
to know what to look for, and needs to understand the shortcomings to
interpret the results.

1.3 Theoretical Solutions

If one cannot model the material behavior sufficiently to expect accurate
code calculations of impact processes, then obviously one could not expect
to obtain exact analytical solutions to those complicated equations. How-
ever, this docs not mean that there do not exist solutions in certain limiting
and idealized cases. There are such solutions, based on an approximation
of the initial phases of the problem as one of a “point source.” Those
solutions play a significant role in determining key features of all solutions
to impact problems. In fact, the primary thesis of this review will be
that the existence and applicability of such solutions are the key to the
understanding and derivation of scaling laws for impact phenomena. This
is true even in those cases where the exact form of the solution is not
obtainable: Whenever such a point-source approximation is valid certain
power-law forms for scaling laws will follow.

The most well known theoretical point-source solution is for a closely
related problem: the propagation in a perfect gas whole-space of the effects
of the detonation of a nuclear explosion.' That point-source solution
was determined by G. I. Taylor (1950) of the United States; and, more
completely, by L. I. Sedov (1946) of the Soviet Union. It was obtained by
making the approximation that the initial conditions can be described as
a point source. Thus, the energy of the nuclear weapon is assumed to be
instantaneously deposited in a region of zero extent. While this approxi-
mation precludes any meaningful description of the effects very near to
the actual nuclear source, it gives a very accurate description for effects
that are at distances large compared to the physical dimensions of the
device, and at times large compared to the time of the detonation: most
of the region of interest. Taylor (1950) used this solution to determine the

'Problems of the effects of nuclear explosions, and, to a lesser extent the effects of
conventional cxplosives, are physically almost identical to those of hypervelocity impacts.
In both cases, there is a deposition of energy and momentum in a very small initial region
that subsequently is redistributed in a very large region. That distribution is accomplished
by an outgoing shock that decays in time and distance. The flow field behind the shock is
adiabatic. Ultimate effects and the remaining signature are determined by the physics of that
flow and the physics of the material behavior as the stresses decay back to initial levels.
Many of the advances in the understanding of impact physics have resulted from studies and
experiments for nuclear explosions.
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explosive yield” of the first nuclear explosion from observations on the
fireball expansion.

This “air-blast” point-source solution is characterized and determined
by the total energy of the explosion. The assumption that the correct
measure of the point source is this energy is, however, a special assumption
which is true because of the assumption of a perfect gas and a whole-
space, spherically symmetric problem. For other materials, and for geome-
tries such as half-space problems, there are still point-source approxi-
mations, but those solutions are not determined by the energy of the
source. Instead they are determined by another single scalar measure called
a “coupling parameter” by Holsapple (1981) and devcloped by Holsapple
& Schmidt (1987). Almost all the scaling results for both explosions and for
impacts are based onsuch point-source solutions, as will be demonstrated.

2. HISTORICAL APPROACHES

An introduction to current methods and a summary of past approaches
is given by considering the most common and simplest scaling law: the
prediction for the volume V of the crater that results from the impact of
a spherical body of radius a, velocity U, and mass density 6 into a planet
with surface gravity g, some strength measure Y (some measure with the
dimensions of stress), and mass density p.

While one can easily imagine other parameters of the problem that may
affect the result, this short list sufficesfor the example. In fact, this is much
more general than might be realized. For any material that has rate-
independent behavior, all material properties include only combinations of
the dimensions of stress and mass density. Thus, every additional material
property can be nondimensionalized using the single strength measure Y
and the mass density p. Then, for scaling size and velocity in that given
material, those additional material property groups are constant, and the
discussion here holds with no loss in generality. The most general material
behavior can be considered by including only one additional rate-depen-
dent material property such as a viscosity (see Holsapple & Schmidt
1987).

It will be assumed that the planet can be considered a half-space, and
that the impact is normal to the planet surface. Then the volume V is
determined by the listed variables:

21t was about 17 kton of equivalent TNT. Modern nuclear devices typically are in the
megatonsize. The impact of the bolide of the presumed KT event, with a diameter of perhaps
10 km at 20 km/sec, would have an energy equivalent to over 10° gigatons of TNT. That is
a factor of 10* times the total yield of all nuclear weapons ever built by mankind.



Annu. Rev. Earth Planet. Sci. 1993.21:333-373. Downloaded from www.annualreviews.org

by University of California - Los Angeles on 04/06/11. For personal use only.

338 HOLSAPPLE
sz[{a9 U,5},{p, Y}’g] (M

with a grouping of the variables into those defining the impactor, those
defining the material of the planet, and the surface gravity of the planet.

Dimensional analysis is the primary tool used to derive scaling theories.
In the case of the Equation (1), there are seven parameters, with the three
independent dimensions of mass, length, and time. Therefore, there is a
simpler relation among four (seven minus three) dimensionless com-
binations (groups). The choice of these groups is not unique, and all results
are independent of the forms chosen. The form chosen uses the mass m of
the impactor as well as its radius:

oV lga Y de
= 5 5e - —dg’. 2
" "{1:(,-"",0(,-"2 k) meyed )

The dimensionless groups in these relations can be interpreted. On the left
is the ratio of the mass of material of the crater to that of the impactor.
This is called the cratering efficiency, and is often denoted by =ny. The first
term inside the function is, to within a numerical factor, the ratio of a
lithostatic pressure pga at a characteristic depth equal to one projectile
radius to the initial dynamic pressure pU? generated by the impactor. This
is the inverse of the definition of the Froude number. It has traditionally?
been denoted as x, (see, for example, Holsapple & Schmidt 1982). Its
presence in (2) allows the cratering efficiency to vary (it decreases) as either
the size of the impactor, or the gravity level increases. The second term in
the function is the ratio of a crustal material strength to the initial dynamic
pressure; it will be denoted as m,. Finally, the last term is the ratio of the
mass densities.

If one could completely determine this function by calculation or experi-
ment then the scaling problem would be solved. However, as stated, neither
is practical, so further simplifications are pursued.

The ratio of the mass densities is usually about unity (and, since there
is no problem matching its value in experiments, it will be omitted for now
and the dependence on the remaining variables studied). Strengths of
geological materials range from less than bars for soils to more than 10s
of kbar for small samples of competent rocks. However, this latter value

*In many previous cases it has been plotted as 3.22ga/U?, where the factor is twice the
cube root of 4x/3. This makes it consistent with explosive results, where the specific energy
of the device is equivalent to 1/2U? and the 4x/3 factor ariscs when the cubc root of m/d is
replaced by the radius a.
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is not characteristic of the large-scale geologies of planetary surfaces
because of the presence of faults and cracks. Thus, the effective values of
crustal strengths range from less than 1 bar to 1 kbar. In comparison, on
the Earth’s surface the lithostatic pressure is about 0.3 bars for each meter
of depth. These values lead to a natural partition between two size scales of
impacts, one appropriate for “strength-dominated” and one for “gravity-
dominated” cratering, depending on the size of the event.

If, for the Earth, the impactor is smaller than about meter-sized, then
the strength of a soil surface is large compared to the lithostatic pressure
and the lithostatic pressure can be ignored. (The maximum size for which
strength is large compared to the gravitational pressures depends linearly
on the crustal strength and inversely on the surface gravity of a planet.)
In this case, Equation (2) becomes

pV Y
=) @

Consequently, in this “strength regime’” the volume of the crater increases
linearly with the volume of the impactor, its mass, and—at constant
velocity only—its energy. By the same argument, any crater linear dimen-
sion such as its diameter d increases linearly with the cube root of the
impactor volume and mass: i.e. with the projectile radius. Such a depen-
denceisoftencalled “cube-root” scaling, or “‘strength scaling.” The depen-
dence on the velocity, however, remains undetermined. In principle, experi-
ments to determine the velocity dependence are possible: One can shoot a
projectile (at up to 8 km/sec) into appropriate specimens. However, one
must then extrapolate to velocities of several 10s of km/sec. Because this
extrapolation beginsfrom processes that have little or no melt and extends
to processes that have significant melt and vapor near the impact point,
the extrapolation is very uncertain. Most experiments of impacts are per-
formed in this strength-dominated regime and at relatively low velocities,
and, as a consequence, give limited information on the majority of cases
of primary interest.

At the other cxtreme, when the impactor is kilometer-sized or larger,
then the crustal strength is small compared to the lithostatic pressure term.
This defines the “gravity regime” for which Equation (2) becomes

pV .| ga
7=f[ﬁ]. )

Thus, in the gravity regime the crater volume is not proportional to the
impactor volume or mass, nor is it neccssarily proportional to its kinetic
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energy. ‘ The dependence on either the size or the velocity, which are related
in a particular way, must be determined by experiment or by numerical
calculation.

Consider experiments in this case. Problems of interest have variations
of the velocity of about a decade, in projectile size of about five decades
[spanning laboratory diameters (cm) to solar system diameters (10 km)],
and in gravities ranging from near zero to a decade larger than the Earth’s.
Then the range of inverse Froude numbers of interest in (4) is about 107 ¢
to 1072, a four decade range. (For very small gravity such as on smaller
asteroids, the strength regime governs all impacts.)

To determine the function for increasing m,, one could perform experi-
ments at a fixed velocity at increasing projectile diameter or one could
decrease the velocity at fixed size. However, for velocities below a few
km/sec, the impacts are no longer hypervelocity ones; different physics
controls the process and additional parameters will occur in (4). Experi-
ments should be at velocities as large as possible. Then the largest possible
value for experiments at Earth’s gravity and for cm-sized projectiles has
an inverse Froude number of about 10~% and experiments in the actual
regime of interest are not feasible.

Only one possibility for experiments in the gravity regime for common
soils exists: These involve increasing the gravitational forces. The technique
was begun in the late 1970s, both for explosive cratering and for hyper-
velocity impact cratering, by Schmidt (1977, 1980) and later developed by
Schmidt & Holsapple (1978a,b, 1980) who performed experiments on a
large geotechnical centrifuge, with gravity increased by a factor approach-
ing three decades. Froude numbers in the gravity regime were thus obtained.

The first experiments of this type were performed in a dry sand. In such
cases, the cohesive strength of the material is essentially zero, so that the
gravity regime also extends back to much smaller inverse Froude numbers.
The results obtained from those experiments were very revealing, and
provided the first clues that led to much of the recent theory on scaling.
Some results of Schmidt & Holsapple (1980) are reproduced here as Figure
1. (These experiments were for explosive cratering, rather than impact. In
this case, the parameters used are the explosive energy per unit mass Q,
equivalent to U?%/2 for an impact, and the explosive mass W, equivalent to
the mass m of the impactor.) While the functional form shown in (4)

4Tt is interesting to note that, until the past decade, researchers of nuclear weapons effects
always assumed that the strength regime and cube-root scaling, as in Equation (3), applied
to the hundred of meter diameter craters produced by nuclear weapons in the megaton yield
range. More recently, thcy have recognized the deficiency of such an assumption for large
nuclear craters also. Schmidt et al (1986) give nuclear and conventional explosive cratering
estimates using the gravity scaling.
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Figure 1 Explosive cratering results in a dry sand at normal and elevated gravity. The
power-law fit extends at least four decades in the gravity-scaled size parameter, giving
decreasing cratering efficiency with either increasing explosive size or increasing gravity.

predicts that there should be some smooth relation between the groups
plotted on the ordinate and abscissa of this figure, the data show a very
particular functional form: an exact power law over almost four decades
of the abscissa, with a power exponent of —0.47. This power-law form is
not predicted by the dimensional analysis leading to (4).

A similar result existed in the literature for impacts into dry sand.
Gault & Wedekind (1977) report on a series of one-g and less than one-g
experiments at fixed energy. (The interest was in lunar craters. However,
the occurrence of the factor ga in the Froude number shows that using a
1 cm projectile at Earth’s gravity to simulate, for example, the effect of a
10 m bolide striking the Moon with a gravity 1/6 of that of the Earth
requires an increased gravity by a factor of 167, not a reduced gravity.)
Separately, Oberbeck (1977) reported a series of variable energy impacts
at one-g. Schmidt (1980) extended those results to larger inverse Froude
numbers by adapting the centrifuge testing methods to impact problems.
When combined and plotted as in Figure 1, a power law is observed with
a slope of approximately —0.50, as reported by Schmidt (1980). The
question was, why were these results all exactly power laws?



Annu. Rev. Earth Planet. Sci. 1993.21:333-373. Downloaded from www.annualreviews.org

by University of California - Los Angeles on 04/06/11. For personal use only.

342 HOLSAPPLE

Described in the literature was one approach that predicted a power
law. An appealing assumption, consistent with the results for the related
air-blast problem and with the older literature on explosive cratering, is
that the dependence on the impactor size and velocity is on its kinetic
energy only, irrespective of its separate size and velocity. In this case (1)
becomes

V=rl{mU%,{p,Y},g] (5a)

The dimensional analysis now leads to a restricted form of (2):

pV| ga 3/4__ Y \| ga 3/4}
el )

which for the strength regime gives a special case of (3):

pV Y \!

(i) e
and for the gravity regime reduces to a special case of (4):

pV |gal™

In the historical scaling approaches, it was assumed a priori that the
energy of the impactor determined the resulting crater size, so that (5¢)
applied. For example, Shoemaker (1963) used this cube-root law and
scaled from a relatively deeply buried nuclear event “Teapot Ess” to
estimate the energy of the meteorite that created Meteor Craterin Arizona.
This approach was adopted from the explosive cratering literature, in
which the form (5¢) was introduced by Lampson (1946) in studies of
craters from explosions of up to about one ton explosive mass—cases
predominantly within the strength regime. In addition, it should be noted
that all common chemical explosions have cssentially the same specific
energy (about 4.2 x 10'° ergs/gm), which is equivalent to a single impact
velocity of 2.9 km/sec. Therefore, it was easy to overlook the possibility
that there might be a separate specific energy dependence in the data, i.e.
to overlook the important difference between (5¢) and the more general
(3). (Nuclear weapons have specific energies over 6 decades higher.)

In the gravity regime, this “energy-scaling” assumption predicts that
there should be a power law, but with exponent —3/4 (Equation 5d)—
substantially different from the observed slopes of about —1/2. Since a
linear crater dimension would then vary as the — 1/4 power of the energy,
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this is called “quarter-root™ scaling: It is the consequence of the energy
scaling assumption in the gravity regime.

In the literature of the 1960s pertaining to micrometeorite impacts into
the metals of spacecraft, along with those who thought that the energy of
an impactor should govern the results, was an opposing camp who pro-
moted the momentum of the impactor as its definitive measure. [Later,
Holsapple & Schmidt (1982) showed that these are the two limits on
possible scaling.] If this momentum, equal to mU, is used in (Sa), then one
again gets a power law as in (5c) for the gravity regime, but now with a
power of —3/7. Although closer to the observed results for dry sand, the
magnitude of the exponent (— 3/7) is below that observed.

At about the same time another important experimental result was
reportcd by Gault (1978) for thc maximum transient cratcr formed by
hypervelocity impacts into water. In reporting his results, he again assumed
a dependence only on the energy of the impactor and reported that a plot
of maximum instantaneous volume versus energy gave the exponent of
—0.75 as appropriate for energy scaling. However, the data were re-
interpreted using the more general dimensionless groups of (4) by Hol-
sapple & Schmidt (1982) who concluded that a substantially better fit was
a power law as in (5c¢) but with an exponent of —0.65.

There were interesting experiments reported at the turn of the century
by Worthington & Cole (1897) and Worthington (1908) for (maximum
transient) craters formed in water by simply dropping rigid balls into a
container of water. The impact velocities were in the range of 1 to 20
m/sec. Theirs and other more recent data were examined by Holsapple &
Schmidt (1982) and a fascinating result was observed. The best fit power-
law curve through the Gault (1978) data (where the velocities of impact
were 6 km/sec) extrapolated to over 6 decades in the Froude number goes
right through the center of the low speed data. A power law with exponent
of —0.65 holds for over 9 decades of Froude number for impacts into
water.

Figure 2 shows these data, as reproduced from Holsapple & Schmidt
(1982). Again, there was very powerful experimental evidence for power-
law scaling laws for cratering efficiency over multiple decades of the
gravity-scaled size.®

These observations, as well as others, led to the approach given by
Holsapple (1981, 1983) and Holsapple & Schmidt (1987). It was recognized
that the assumption that the kinetic energy of the impactor governed all
subsequentresultsis in factequivalent to a point-source assumption, where

* The simple water-drop experiments using 1 cm balls with 10 m/sec impact velocity have
the same Froude number as a 10 km/sec impact into Earth’s ocean of a 10 km bolide!
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Figure 2 Data for cratering in water for velocities from 1 m/sec to 6 km/sec. A single power-

law fit through the hypervelocity data goes right through the low speed data. Thus, a single
power-law fit holds for over 8 decades of impactor radius (24 decades of mass), 4 decades in
impact velocity, and 8 decades in gravity.

the measure of the impactoris 1/2mU?. It is convenient to take a cube root
of this, to use the impactor radius, and to drop a numerical factor to get
the measure

C=6"alU?. (6a)

Alternatively, the assumption that the momentum dominates all results
is equivalent to a different point-source assumption, with the measure

C = 83U (6b)

While the only well-known actual point-source solution was that for
the spherical air-blast problem (for which it was indeed the energy that
governed), there were other point-source solutions in related literature
where other measures governed. The book by Barenblatt (1979) presents
a detailed exposition of a class of problems in mechanics termed “self-
similar of the second kind.” In distinction to those he calls “of the first
kind,” those of the second kind are governed by point-source approxi-
mations for which certain exponents governing those solutions are not
known a priori, but depend on the parameters of the problem and are
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determined in the course of the solution. A study of those point-source
problems and the nature of their solutions leads to the current scaling
approaches.

3. POINT-SOURCE SOLUTIONS

In an impact problem, one starts with the assumption that the impactor
size a, velocity U, and mass density 6 each affect the outcome. Those
measures of the impactor give a size scale a, a velocity scale U, a time scale
T =a/U, and a mass scale da’. Clearly those three separate measures can
separately affect certain aspects of the results. For example, the initial
pressure generated for sufficiently high-speed impacts is proportional to
the square of the velocity. Thec amount of melt or vapor may be determined
by the velocity and the mass of the projectile. The time to transfer the
energy and momentum of the projectile into the target and for the shock
to traverse the projectile is proportional to the time scale.

On the other hand, it seems entirely reasonable that these scales can
only affect the solution very near to the impact point. For phenomena at
a distance of many projectile radii, and at times of many scale times, how
much can the details near the impact source affect the results? How much
can they affect the final crater volume? Can the source region be approxi-
mated as a point source? In an early paper, Rae (1970) assumes so, and
considers some aspects of the shock propagation of point-source solutions
to the impact problem.

In mathematics a point-source solution is introduced as a limit. A
problem very similar to the nuclear air-blast problem mentioned previously
provides an example. Consider an infinite region filled with a perfect gas
of initial mass density p,, where at the initial instant there is a high pressure
spherically symmetric “source” region of radius a and pressure P,, but
where the rest of the infinite region is initially at some low pressure P,,.
The sole material property of a perfect gas is the perfect gas constant y.
The initial pressure and size define the initial energy of the problem (inter-
nal rather than kinetic in this case),

dn P,
El—~3—y—_-1a. (7)

Because of that initial spatially discontinuous state, there will be a
spherical shock generated which propagates outward with time. Denote
by R the position of that shock and by P the pressure at the shock which
are functions of time z. Behind the shock the pressure p will be a function
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of radial position r and time ¢. All depend on the problem parameters.
Thus

D =P(", t’a:Pl’PO’pO’y) (83)
R = R(t,a, Py, Po,po,?) (8b)
Pf= F(t,a,Pl,Po,Po,?)- (SC)
These can be written in a nondimensional form as

oot P
P| - f (‘?1!;11)[) (9a)
R ¢ P,

= fl —, 9b
" (L) o
j)i' . H lno
el p) o

where the dependence on the dimensionless perfect gas constant is under-
stood, and the source region length scale a, and a time scale defined as
t = a\_fpo/Pl are used to nondimensionalize. Here we consider only the
“strong-shock’ regime, where all pressures are very large compared to the
pressure Pg. Then the pressure ratio Py/P, can be dropped from further
consideration.

For the asymptotic form of these relations when the time ¢ and distance
r are large compared to the source scales, the ratios r/a and ¢/¢, are large.
These ratios also become large in a different limit as the source size and
time scale become small, which is the limit leading to the definition of a
point source. A point-source problem is then a limit of problems where
the initial size scale a and the time scale ¢, go to zero, but where the
initial pressure P, becomes infinite in some (as yet) undefined way. The
fundamental question is whether such a limit exists in a nontrivial way
(not become infinite or identically zero); and, if so, how the initial pressure
must grow to infinity.

An answer to this last question can be given. Suppose that in the limit
the pressure P, and the source size a vary in some particular way:

lirré (P,a*) — constant (10)

for some particular positive value of the exponent f. Then in that limit the
sole remaining measure of the source region is the single scalar P,a® or,
by taking a root, aP}’’. In this case the three variables remaining in (9a)
can be recombined into two as
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p(r PN
PG -0 .

which gives a form that does not become indeterminate in the limit, as a
consequence of (10) and because of the definition of the time scale.

Thus, point-source limits may exist when some combined measure of
the initial pressure and size is fixed in the limit process.® That measure
determines all characteristics of the point-source limit.” In the limit, Equa-
tions (9b) and (9c) can also be recombined to become

R/t ~2/(f+2)
a\s,
Pf t 2B/(2+B)
P\t

showing that in this point-source limit the shock front moves outward as
a power law, with power 2/(2+ ) and the shock pressure decays with time
to the power —28/(2+ B). The remaining question is, of course, what is
the correct value for the exponent 7 While one might suppose that the
initial energy given in (7) should govern the solution, such an hypothesis
(which is in fact correct in this particular spherical, perfect gas case) must
be proved. Why could not some other combination of the pressure and
size govern?

Assuming that the energy governs the solution, then the total initial
energy in (7) must be held constant in the limit process defined in (10), and
from (7) it is seen that f = 3. Then the shock moves outward in time with
the power of 2/5 and the pressure decays in time as the power of —6/5.
Taken together, these imply that the pressure decays with distance to the
power of —3. These results are well known for spherical air-blast problems.

How does one prove the existence of such a limit? How does one obtain
the unknown exponent of the source measure? Barenblatt (1979) shows
how to determine the unknown exponent for certain examples of self-
similar, point-source problems. Generally, it is determined as an eigenvalue

I

constant (12a)

constant (12b)

%The proof of the actual existence of such a limit must be done on a case-by-case basis.

"The relation (11) is an example of what are called self-similar solutions in the study of
solutions to partial differential equations in mathematics. Thus, a point-source limit (in the
strong shock regime) is by necessity self-similar. At sufficiently large timcs, the pressurcs will
decay to where the atmospheric pressure in front of the shock can no longer be ignored. The
solution still arises from an initial point source, but it is no longer self-similar. Therefore,
while self-similar solutions are point-source solutions, the converse is not true: Point source
solutions need not be self-similar, and generally will not be in the far field.
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from a nonlinear ordinary differential equation of first order that must
satisfy two end conditions. Fortunately, the theoretical determination of
the exponent is not needed here; it suffices to know the general form that
such point-source solutions must take. The existence of a single scalar
measure of the form in (10) is sufficient to determine the form of scaling
laws, and relations between different aspects of the same problem. We now
return to the impact problem and derive such forms.

4. SCALING LAWS FOR CRATERING

It has been shown above how point-source solutions determine power-law
scaling laws in terms of some single combined measure of the source. The
converse is also true: Since any power-law form has a combined single
measure, that form implics a point-source measure. Based on that, Hol-
sapple (1981) considered a single measure

C = aU*s" (13)

assumed to measure the results in the far field of the impact of a bolide
with radius a, velocity U, and mass density 6. This same approach was
used by Dienes & Walsh (1970) for impacts into metal targets; they called
the approach “late-stage equivalence.” The exponents p and v remain
undetermined for now, but special cases can be noted. If the impactor
kinetic energy is the corrcct measure, as has been assumcd for cnergy
scaling in the past (this turns out never to be exactly correct for the
problems of interest here), then 4 = 2/3 and v = 1/3. For the momentum
assumption, g = 1/3 and v = 1/3.

Theterminology “coupling parameter” is used sinceit is thesole measure
of the coupling of the energy and momentum of the impactor into the
planetary surface. It must then determine all subsequent scaling laws for
all phenomena appropriately determined by the far-field solution.® This
coupling parameter is determined by the two exponents p and v. Therefore,
all scaling laws of impact processes will involve those exponents in some
specific way. Several of the more important examples of the development
of those scaling laws are presented here. The reader can refer to Holsapple
(1987) and Holsapple & Schmidt (1987) for more complete results and
tables of scaling forms.

81t is not always clear which effects are sufficiently far from the source to be included.
However, code calculations (se¢ Holsapple 1982, 1984) have routinely showed that the
solutions approach that of the point-source solution for a distance within one to two impactor
radii. (See also O’Keefe & Ahrens 1992h.) For a feature such as the amount of melt or vapor
produced, it is more likely that this measure should not be used but instead scaling based on
the near-field solution would be better.
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4.1 Crater Volume

When there is this single measure of the impactor, relation (1) for volume
scaling takes the special form

V = flaU*6" p, Y,g) 14)

[Holsapple & Schmidt (1987) also included a dependence on a material
viscosity, whichis useful for cratering in viscous materials, but is probably
not required for the majority of applications. The interested reader can
consult that reference for the more general results.]

To do a dimensional analysis one must recognize that the dimensions
of the coupling parameter depend on the two exponents p and v. There
are now only two (five minus three) dimensionless groups. Two alternative
useful forms obtained are

P_V( Y )1::_.,-3(,())"-' 1 _r ga (;,Ez)tz ' xz}.-'z(g W (]Sa)
" pU?', & AN 5 _

pK ga 3#/(2+u)<£ (6v—2—)/(2+p) _c l ga '2”2“’(;))2”/(2“‘)}

m U2 5 pUZ U2 6 .

(15b)

These forms may look complicated, but the functions now have a single
variable. They give explicit results in both the strength and the gravity
regime limits. In the strength regime gravity can be ignored; the function
of the right of (15a) is a constant F[0] so that

m pU2 3)1/2<p)l—3v
Ve P < ¥ ) 5 . (16a)
Similarly, ignoring the strength in (15b) gives for the gravity regime
—3u/(2+4) (2+4~ 6W/(2+4)
m| ga p

Based on some plausible hypotheses Holsapple & Schmidt (1982)
showed that the momentum scaling and the energy scaling give the upper
and lower bounds on the scaling exponent u. Thus, 1/3 < u < 2/3. For
both limit cases the exponent v is 1/3, so this is a likely general value also.
Since for all cases of interest the mass density ratio does not deviate from
unity by more than a factor of three or so, the terms with that ratio are of
the order of unity, and will often be omitted.

All of these results can be illustrated as shown schematically in Figure
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3, which shows the cratering efficiency 7ny versus the gravity-scaled size
parameter 7w, as it would appear on a log-log plot. In the strength regime,
the cratering efficiency is constant for increasing impactor size but depends
on the velocity. In the gravity regime, the cratering efficiency decreases
with increasing impactor size as shown. The exponent of that decrease has
been often denoted by — a; comparison with (16b) yields

o= 3
S 24

The limits on « are 3/7 to 3/4.

Experiments in an alluvial soil on a centrifuge (Holsapple & Schmidt
1979) for explosions have indicated that the transition between the strength
and the gravity regimes typically spans about two decades in the 7, pa-
rameter, over which the gravity lithostatic pressure ranges from about 1/10
the strength to 10 times the strength. Following the approach of Holsapple
& Schmidt (1979) a convenient empirical smoothing function to span the
transition can be given as

a7

|
| e
STRENGTH REGIME S! g‘RAVICT:t RrsE)GIME
(Small Craters) 1 arge Lrate
N ol
QR }
il -
I
& Z
2
5| S
8 £ -
uL::) § U=2.5 km/sec
Gy 153
= g
&n N
g =
§ Increasing Size
o
Ll
@)

Gravity-Scaled Size ™ :f—;az

Figure 3 The regimes of cratering for a material with strength. In the strength regime the
cratering efficiency depends on the impact velocity, but is independent of gravity-scaled size.
For increasing size at a fixed velocity, there is a transition to the gravity regime in which the
cratering efficiency has a power law decrease with increasing size. Most experiments in
geological materials are by necessity in the strength regime.
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p (6v—2—p)/3p p (6v - 2)/3u (24 1)/ 2)—= 3u/(2+ )
Ty = Kl{ﬂZ(g +| Koms 5

_pV _ga Y

T My=—p, M3=-—3
v m’ 2 Uza 3 pU2:

(18)

where the definitions of the dimensionless groups for the cratering
efficiency, the gravity-scaled size, and the strength group are again
indicated. This has the correct limits in both regimes. The two constants
K, and K, as well as the exponents p and v can be chosen to match the
results in each of the gravity regime and the strength regime. Henceforth,
it will be assumed that v = 1/3 in all cases, which simplifies the results.
[Holsapple & Schmidt (1979) omitted the power on the strength term since
it was not recognized that the exponent in the strength regime and that in
the gravity regime must both bc dctermined by the common exponent of
the point-source solution. Holsapple & Schmidt (1987) later gave a correct
form.]

The material strength Y occurs in the numerator of the second term as
the product K,Y which is then determined from cratering experiments in
the strength regime. One can take K, equal to unity and then determine an
effective strength ¥ to match the strength-dominated, small-scale cratering
results. This approach will be used. The notation 7 is used to denote that
choice. Then Equation (19) gets somewhat simpler:

O‘ i3 SN 24
,E:(_) + ﬁ"‘.}2+_:e:';'2‘l . (19)
. 7

This equation is then used for the scaling of crater volume for all materials.
The transition between the two limits occurs when the two terms inside the
brackets are equal. This occurs when the gravity-scaled size 7, parameter
defined above is equal to (¥/pU?)+#/2,

Schmidt & Housen (1987) present estimates of this form® for wet and
dry soils and for water. Additionally, estimates can be based on explosive
results. Schmidt et al (1986) have presented a complete set of estimates for
nuclear and conventional explosives in a variety of geologies and burial
depths. It has been determined by Holsapple (1980) that explosive sources
buried one to two source radii give the same crater size as an impact event
with the same energy and specific energy. Using these data, estimates for
impact crater size can be determined. The estimates here are a composite
of those two sources. Since the estimates are unknown to within a factor
of perhaps two, there is no point in retaining the ratio of the mass densities,

my — K

?Note that the definition of =, is different there by a factor of 3.22, see Footnote 3.
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and it will be dropped. It could be reintroduced to give estimates of the
effect of variations in impactor mass density.

Values for a range of representative geological materials are given in
Table 1. Note that the estimates for the strength regime of rocks is based
on relatively large craters. It thus requires sufficiently large impacts so that
the effective strengths are those of the material on 10 to 100 meter scales,
not cm scales. Small laboratory experiments will give much smaller craters
than these estimates in such cases.'® Figures 4 to 7 are plots for these
representative materials.

4.2  Ejecta

The methods described above have been applied to the scaling of ejection
dynamics and final ejecta blanket profiles by Housen et al (1983). Again,
there are important distinctions depending on whether material strength
or gravitational forces are the dominant mechanism determining crater
size. Laboratory experiments are usually in the strength regime. Of course,
once material is ejected from the crater, it is always gravitational forces
that determine its ballistic path.

For brevity, only a few of the more important results of ejecta scaling
are summarized here; the reader is referred to Housen et al (1983) for the
complete analysis (see specifically Table 1 of that reference). Since all
scaling aspects are determined by the point-source approximation, they
are all given in terms of the single scaling exponent g, or equally, in terms
of the exponent « defined in (17). Those interdependencies have often been
violated in strictly empirical approaches to scaling.

Housen et al (1983) give results for the dynamics of the ejecta plume
position, velocity, mass, and angle; as well as for the final blanket thickness
versus range. In the gravity regime, the crater dimensions and the ejecta
are both determined by the coupling parameter and by gravity. When the
crater radius R is used to nondimensionalize the ejecta phenomena, the
dependence on the coupling parameter cancels out. The results in the
gravity regime are listed in Table 2. These results show that in the gravity
regime all ejecta blankets are geometrically similar to the crater size. This
isnottruein the strength regime, where the blanket moves relatively closer
in as the crater sizes grow (see Housen et al 1983).

4.3 Crater Depth and Radius

4.3.1 SIMPLE CRATERS It is the crater radius that is most easily deter-
mined from remote observation. Consider first the so-called simple craters
'Very small craters in competent rocks and other brittle targets are dominated by surface

spall effects rather than the excavation mechanisms of the large craters. The photo in figure
2.1 of Melosh (1989) gives a good example for a very small 30 xm crater in glass.
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Table1 Cratering volume estimates for a variety of geological materials

Transition

Scaling Scaling ~
exponent  exponent Y impactor
Material o u K, mpa Strength regime? Gravity regime® diameter®
Sand 0.51 041 024 0 - V= 0.14 m0-83 G-051 y1.02 near 0
Dry soil 0.51 0.41 024 0.8 V=004mU!23 V = 0.14 m0.83 g-051 yy1.02 0.2 meters
Wet soil 0.65 0.55 020 1.14 V=0.05m Ul.65 V = 0.60 m0-783 G-0.65 71.3 1.2 meters
Water 0648 055 230 0 - V = 13.0 m0.783 G-065 y1.3 near 0
Soft rock 0.65 0.55 020 7.6 V=0009mU!65 V=048m0.783G-0.65y1.3 11 meters
Hardrock 060  0.55 020 18 V=000SmU!65 V=048m0783G065y13 32 meters

2Uses mass in kg, velocity in km/sec, gravity in Earth G’s, gives volume in m>.

® Impactor diameter at Earth’s gravity and impact velocity of 10 km/sec: it is proportional to g~ 'U™*.

S4SSHO0Ud LOVJIWI DNITVOS

€6¢



Annu. Rev. Earth Planet. Sci. 1993.21:333-373. Downloaded from www.annualreviews.org
by University of California - Los Angeles on 04/06/11. For personal use only.

354 HOLSAPPLE

----- ALLUVIUM, U=5 |
— - - ALLUVIUM, U=10
— - ALLUVIUM,U=20
ALLUVIUM, U=40

T, =pVim

I H — ! i
2 . !

10! T, = 0.]3’2(7:2 + 7, e ] B .
Y =0.0065mpa, p=1.7
l| u=0.41, @=0.51 _ _ :

e i i ! | i .

10°° 107 10° 107
7y=(8alU?)

Figure 4 Crater volume estimates for dry soils and sand showing the strength and gravity
regimes. Analytical expressions are as shown. At Earth’s gravity and an impact velocity of

10 km/sec, the gravity regime holds for impactor radii above about 1 m, with a corresponding
crater volume of about 3 x 103 m?.

which are those usual bowl-shaped craters of the laboratory and the
smaller lunar and terrestrial craters. There are two radii that can be
identified. Experiments usually report the radius R, measured as the radius
of the crater excavation at the original ground surface. Remote obser-
vations more often use the rim radius R, measured to the top of the rim
around the crater formed from the uplift and ejecta. An approach as above
for either gives a law of the form

S 1/3 ) 1/3 -1/(2+p)

TR = <- R = K] s (“ +7E(32+H)/2j| « (20)
m P

In the gravity regime this is

(5 1/3
<;) R= K‘(Tcz)la/} (21)

(where the mass density ratio raised to a small power has been ignored).
Schmidt & Housen (1987) give K, = 0.69 and o = 0.51 for dry soils when
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Figure 5 Crater volume estimates for wet soils and water showing the strength (for the soils
only) and gravity regimes. Analytical expressions are as shown. At Earth’s gravity and an
tmpact velocity of 10 km/sec, the gravity regime for wet soils holds for impactor radii above
about 1 m, with a corresponding crater volume of about 2 x 104 m?

converted to this form for the excavation radius R.. This can be expanded
to

Re — 7.86_0'1700'83U0'34 (223)

using the same (m, G, km/sec) units as in Table 1. The radius to the rim
peak around the crater has the same scaling, but with a different coefficient.
The measurements of the rim profiles reported by Housen et al (1983) for
dry soils give the rim peak at a factor of 1.3 of the excavation radius. In
either the strength or gravity regime any linear dimension will follow the
same type of scaling law, so the crater shapes are similar at all sizes (but
could be different in each regime). Therefore the ratio of rim radius to
excavation radius is constant. Thus

R, = 10.14G*17g° %373, (22b)

The reader is referred to Schmidt & Housen (1987) for other estimates of
this form for wet and dry soils and for water.
Two crater depths can also be identified: that below the rim peak d,,
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Figure 6 Crater volume estimates for soft rocks showing the strength and gravity regimes.
Analytical expressions are as shown. At Earth’s gravity and an impact velocity of 10 km/sec,

the gravity regime holds for impactor radii above about 10 m, with a corresponding crater
volume of about 4 x 10° m>.

and that excavated below the original ground surface d.—the difference
being the rim height 4. Experimental craters in an alluvial soil show an
aspect ratio R./d, just over 2 for shallow buried explosions in an alluvial
soil, and a rim height 4/R, of about 0.07 (Schmidt et al 1986). Pike (1977)
shows a constant value of about 2.55 for R./d, and /R, = 0.072 for lunar
craters from a diameter of 0.1 km up to a crater diameter of about 15 km.
These are all approximately consistent. Thus, for the depth d, one can
simply use (22b) divided by 2.55, and for the rim height 4 can multiply
(22b) by 0.07 to get

dr — 4.06_0'1700'831]0'34 (22C)
for the depth below the rim, and
h = 0.71670'”00‘83(]0‘34 (22d)

for the rim height.

4.3.2 COMPLEX CRATERS For the larger craters, additional phenomena
occur. Incontrast to the results for the smaller craters, the observed aspect
ratio is no longer constant but increases rapidly with increasing crater
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Figure 7 Crater volume estimates for hard rocks showing the strength and gravity regimes.
Analytical expressions are as shown. At Earth’s gravity and an impact velocity of 10 km/sec,

the gravity regime holds for impactor radii above about 20 m, with a corresponding crater
volume of about 2 x 10’ m?,

Table2 Scaling of cratering ejecta®

Ejecta characteristic Gravity regime results
.. . 5

Plume Position x versus Time t X / R o (t 2R )Zm’[a+ )
Velocity v versus Position x v / x/g—R (x / R (a-3)/2a

i 1 -3 I
Velocity versus Time v / \{g_ o r \/gTR)(“ Wa+3)
Volume Ejected at Velocity > v v / R e (v / ﬁ)éar’(a—.i)
Volume Ejected at Position < x \% / RS oc (x/ R)

Blanket Thickness B versus Range r  p /R o (r / R)(sm)/(a-.?)

@ From Housen et dl 1983.
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diameter. Pike (1977) shows that, for craters with a diameter greater than
20 km, the depth below the rim scales with the rim radius as d, ¢ R?* so
that R,/d, oc RY7. That fact, and the obvious morphological changes for
the larger craters, are affirmation of a new mechanism for large craters—
generally thought to be a collapse of simple craters above a certain thresh-
old size (15 to 20 km diameter on the Moon, 3 km on the Earth) due to
gravitational forces, leading ultimately to the complex craters having cen-
tral peaks, terraced walls, and circular rings. That the transition occurs on
several different bodies (the Earth, Moon, Mercury, and Mars; see Pike
1988) at a value inversely proportional to the surface gravity argues
strongly for this gravity-driven mechanism (assuming roughly equal crustal
strengths).

Thus, when a simple crater is sufficiently large, there apparently occurs
a final “gravity-modification’ stage of formation. Any shape described by
the scaling laws given above will collapse and perhaps, if large enough,
oscillate to form the large basins observed, with resulting topologies of
slumped walls, terraces, and central peaks. The final resting state of the
crater in those cases then will have a much smaller depth and somewhat
greater radius than that predicted from (22). However, since this slumping
is to first order volume conserving, the volume scaling will not show this
effect, and the results above may be applied. (If anything, because of
bulking, the crater volume may decrease during these processes, making
the predictions given an upper bound. However, over long time periods
any low density material may be expected to consolidate back to its initial
density by natural processes.)

Thus, for the scaling of the radius and depth the final resting con-
figuration can no longer be simply assumed to depend on the gravity field,
since the slumping and final configuration must be determined by some
material strength measure. There reappears a dependence on both the
gravity (determining the transient crater) and on some strength (deter-
mining when the crater is “frozen” into its final configuration). The
additional dependence on a material strength will give another transitional
regime and the appropriate scaling law for the crater radius may appear
as shown schematically in Figure 8.

A simple scaling approach to this problem will be outlined. If the
slumping and rebound phenomena are effectively uncoupled from the
transient crater stages of the formation, then either of the above Equations
(22) for the gravity regime can be used directly for a maximum transient''

""In some cases, it is also important to distinguish between a maximum transient crater
and a final resulting simple crater shape. The radii of those two are nearly equal, but the
depth of the maximum transient crater is typically a factor of two larger than the final simple
crater due to rebound mechanisms. See the measurements by Schmidt & Housen (1987).



Annu. Rev. Earth Planet. Sci. 1993.21:333-373. Downloaded from www.annualreviews.org
by University of California - Los Angeles on 04/06/11. For personal use only.

SCALING IMPACT PROCESSES 359

GRAVITY REGIME

|
!
STRENGTH REGIME |
(Small Craters) : (Large Craters)
\ '
‘“"E\ N I
alg Ufil):byi_ﬂ%___:_____._ 5 _ L
S - N .
1l N t
o bu=0 L ™y L '
Tt 3 | COMPLEX CRATERS
Very large craters,
Uﬂ: U=2.5 kun/sec e l_(_l’y ge e )_"'
g e i TRANSITION TO
3 | BASINS
] |
z |
|51
"=
& Increasing Size |

N\\

—

Gravity-Scaled Size ™ :f]az

Figure 8 Schematic cratering curves for crater radius, showing an additional “complex
crater” regime for very large craters. At Earth’s gravity, the strength regime holds for
submeter sized craters, the gravity regime for meter (0 kmsizes,and the transition to complex
craters begins at diameters of a few kilometers.

crater rim radius R,. The subscquent crater modification stage docs not
depend at all on the impactor conditions but only on this transient crater
size, on gravity, on the mass density of the material, and on some material
strength, so that the final rim radius is given by

R =f(Rl>p’g7 Y) (23)
which has the dimensionless form

R PgR,

£ )

Thus, there is a single unknown function to be determined. (Earlier
approaches have often assumed a constant function, e.g. f=1.3.) This
relation will hold only when the crater radius is greater than some tran-
sitional crater radius denoted by R,. At that transition R, = R, and also
R = R, so that the function must be unity when R, = R,.

This means

R, Y (25)
* 7 pg
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so that the transition radius is proportional to some strength measure and
inversely proportional to the gravity. Substituting this back into (25) gives
a useful form which eliminates the unknown strength in terms of the
observable transition radius:

R R
s (2)

It is tempting to introduce the usual power laws for this function; but,
in contrast to the developments above, here there is no obvious theoretical
reason for such. It is clear though that the function must be unity for
craters below the transition size R,, and an increasing function above that
threshold.

In the past, therehave been several authors who considered this problem,
most recently Croft (1985). Croft does succumb to the temptation: He
assumes as his working hypothesis that the final radius is a power law in
the initial energy, with an additional dependence on the velocity. He
obtains a relation like

R R
,*R:=(R—j @7

as a special form for (26). [A more direct approach would be to simply
assume that the final radius depends only on the transient shape as in (24),
and assume a power law there. Then one again obtains relation (27).]
Croft (1985) examined four different criteria based on extensive lunar
observations and chose the exponent f as 0.15. One of those criteria was
an assumption of the constancy of the volume in a slumping process, which
uses various earlier empirical forms for crater geometry featurcs. Melosh
(1989) also presents an argument based on constant volume, together with
the simple power-law analytical forms for the ejecta blanket thickness that
hold for energy scaling in the far field.

A new analysis (Holsapple, unpublished) is also based on the assumption
of constant volume in a slumping mechanism, but with several improve-
ments over the previous analyses. The actual crater shapes and the rim
profiles as measured by Schmidt et al (1986) and Schmidt & Housen (1987)
were used, rather than a simple analytical power-law model appropriate
for the far field only. The crater scaling given here was used for the shape
and volume of the simple craters. The morphometric data of Pike (1977)
for actual lunar craters gives a basis for determining their volume as a
function of the final radius R. Then the extent of the crater slumping can
be determined, and a particular function as in (26) determined. The final
results of this analysis are as shown in Figure 9.
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Grieve and

Melosh (1989) ® | Head (1983)

. Final Rim Radius / Simple Crater Radivs

RiR,

100

RIR, Final Radius / Transition Radius

Figure 9 Radius enhancement due to gravity-modification slumping mechanisms based on
a constant volume mode! of the author and observed simple crater profiles.

There are two curves shown, one the ratio of the final rim radius R to
the transient rim radius R, and one the ratio of the final rim radius to the
transient excavation radius R.. Previous studies have not distinguished
between these, and there is a factor of 1.3 difference. Either curve is
essentially a power law over most of the domain of interest. These results
seem to be as consistent with the large variety of observed features given
by Croft (1985) as is his power-law estimate. The Shoemaker (1962) esti-
mate for Copernicus seems to be for the ratio of rim radii, so the present
result is definitely below it. The Melosh (1989) estimate for Copernicus is
based on a model that has no difference in the two radii. The Grieve & Head
(1983) estimate for the 100 km diameter terrestrial crater Manicouagan is
most applicable to the ratio using the transient excavation radius, and the
present result agrees well.

For analytical calculations, the fit to the functions shown are

R R 0.079 R R 0.079
E=1.02(R—*> , E=1'32<R—*> (28)

for the ratios of the final to either of the transient excavation or rim radius.
Since the ratio of the radius R to the transition radius R, can be directly
observed, this result (28) can be used to determine the original transient
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radius in terms of the observed final radius R. Then (22) applied to R,
gives the impactor conditions.

For lunar craters the results are as shown in Figure 10. The transition
is taken at a crater radius of 8.5 km, the value where the volume given by
the scaling of simple craters here equals that determined by the Pike (1977)
data. (This plot does not show the strength-dominated craters that would
occur for smaller diameters.)

The depth scaling for complex lunar craters was obtained by using the
rule

d R 0.301
= =0‘313<F> (29)
* *

for complex craters—a dimensionless form equivalent for lunar craters
with that given by Pike (1977). Note that the final depth is much reduced
from the transient; at 100 times the transition size, the depth is reduced by
a factor approaching 20 of the predicted simple crater depth (a factor of

1060

impl: Craters

~
S
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~
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Crater Rim Radius and Depth From Rrm, km

-- Simple Crater Radius, U=15
Simple Crater Radius, U=40

- Simple Crater Depth, U=15

- Simple Crater Depth, U=40
—— Complex Crater Radius, U=15
Complex Crater Depth, U=15
—— Complex Crater Radius, U=40
Cemplex Crater Depth, U=40

0.01 0.1 i 10 100
Impactor Radius, km

0.1

Figure 10 Crater radius and depth for lunar craters showing both the transitory simple
crater and the final complex crater sizes.
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40 less than the maximum transient crater). The radius is enlarged by a
factor of almost 1.5 from the excavation radius, and a factor of about 1.9
from the simple rim radius.

The scaling of these last two sections implies that the impact on the
Moon of a 25 km radius impactor traveling at 25 km/sec would first
excavate a simple crater with a depth below the rim of about 72 km (using
22¢), an excavation radius of 141 km (using 22a), a transient rim radius
of 184 km (using 22b), with a previous transient depth of about 150 km.
Then, during the gravity modification stage (using Equation 28b), this
structure reforms to a depth of “only’” 7.3 km and to a radius of 244 km.
While an initial excavation to such great depths may seem surprising, code
calculations of large impact structures produce similar results (see Roddy
et al 1987).

4.4 The Dynamics of Crater Formation

In addition to the final crater, the methods here can also be applied to the
actual dynamics of the shock propagation and the crater growth history.
The key is the assumption that a single combined coupling parameter
measure is appropriate, and that it must determine all aspects of the event.
Measurements of observations of any one suffice to give that exponent,
and the scaling of any other aspect can be predicted. Dynamic facets
include the time of formation (Schmidt & Housen 1987), the shock pressure
decay, the transient crater growth history (Holsapple 1984, Holsapple &
Schmidt 1987), and others.

Tables 3 and 4 give a variety of results for the dynamics of the crater
history. Shown are a general case and six specific special regions that can
be identified. (In some cases, the regimes overlap.) Two examples of the
use of this table, and a discussion of the various regimes will be given.

4.4.1 SHOCK PRESSURE PROPAGATION AND DECAY Consider the peak
pressure P at the shock wave formed from the impact event. Figure 11
shows a schematic of its decay with range or with time. That pressure can
depend on the variables shown in the second column of Table 3, namely
p, U, a, c Y,r t, where cis a sound speed measure of the material. For
the initial value at the instant of contact (r = 0, ¢ = 0), the pressure is
typically substantially above any strength measure, so the strength ¥ can
be ignored; and usually the impact velocity is substantially above the wave
speed ¢, so it too can be dropped. [If the impact velocity is not large
compared to the sound speed, then the sound speed ¢ must be retained,
and the dimensional analysis yields P/(pU?) = f(c/U). The exact value can
be obtained by the usual impedance matching approach.] Furthermore,
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Table 3 Scales for impact processes for initial values and near-source regions

General Initial Near source
Defined by:  i0i=0 rve
Variables: p.U,a,c.Y,r p.U,a p,U.a,r (or i)
Pressure pU?, pctY pU’? pU*f(r/a)
Velocity U, Cﬂ/—% U U f(r/a)
Time, Durations a/U.,t af/U afU f(r/a)
Position, Length ar a a f(r /a)

Table 4 Scaling of cratering events away from source region, as governed by the point-source approximation

Strong shock Intermediate S;;ecia] intermediate
Defined by: P>>pc’, r=2-3 P=pc? | Shock speed = ¢
Variables: p,aU”,r (or 1) p,aU*,c,r (or 1) pc,aU”,r (or 1)
Pressure pU*(af r)zm pU*(afr )2/“ f ((“/ U)afr )-ml) pcU(ajr)™
Velocity Uafr)™ U(afr)™ f{(cru)a/ry™) U(afr)™
Time, Durations (qfU )("/0)(““)//‘ (a/U)(r/ a)(“")/"f ((C/ Ua/r )-W) (aq/U )(r/a)(“" Yn
Position, Length a(Uiay e a(Urfa)"*? f((c/u)(m/a)’/‘““’) a(Us/a) !

Weak shock

P=Y or pgh
p,aU”,c,Y,r (or 1)
f alsohas (Y/pc?)

f also has c?

(¥/pc’)
f also has (Y/pc?)
f also has {Y/pc?)

1643

ATddVSTOH
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Figure 11 The regimes of the evolution of the peak pressure at the shock for the outgoing
shock wave in an impact problem.

the finite curvature of the impactor is not yet a factor, so that the radius
a can also be dropped. That leaves only the two variables p and U. A
dimensional analysis then gives the result shown in the third column of
Table 3: P oc pU? This is indeed the result obtained by a simple one-
dimensional “impedance-matching” solution for an impact. (The intro-
duction of a specific Hugoniot result such as a linear shock-particle velocity
relation will give the constant of proportionality of this relation again by
using the impedance matching approach of shock mechanics.)

This initial shock will then move into the interior of the body and form
a nearly hemispherical shock which decays in magnitude as it propagates.
The peak pressure at the shock is then a function of position r (or of time
t). When r is on the order of the impactor radius a, that radius must be
retained in a dimensional analysis which gives (assuming the case when
U » ¢) P = pU?*f(r/a), as in the fourth column of Table 3. Similar results
are obtained for the particle velocity at thc shock, for the time duration
of the pulse, and its position.

After the shock moves a few impactor radii away from the impact point,
the problem transitions to one governed by a point source, as measured
by the coupling parameter. In general, the problem can still show three
distinct regimes, depending on the magnitude of the pressure. These three
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possible regimes are called the “strong-shock,” the “intermediate,”” and
the “weak shock” regimes. There is often a fourth regime which is labeled
as the “special intermediate’ in Table 4.

Thestrong shock regime is defined as one for which the particle velocities
are still much larger than the sound speed c. Equally, the pressure P > pc?.
However, there cannot be a separate dependence on the impactor velocity
U and its radius ¢ in this regime, since the point-source approximation
governs.'? The second column of Table 4 then shows the results of a
dimensional analysis, P = pU%(a/r)¥*, giving a power-law decay of shock
front pressure with distance. The particle velocity at the shock decays with
distance to the power of 1/t

As that decay progresses, the pressure will ultimately become com-
parable to the pressure scale pc’. Then the sound speed ¢ again reenters
the analysis, giving the less specific results shown in the “intermediate
regime.” However, usually the power-law result for the velocity holds to
much greater ranges than that for the pressure, even when the shock
velocity is comparable to the sound speed. In that case, the pressure at a
shock is linear in the particle velocity, as is apparent from the jump
conditions. Thus, since the velocity decays to the power of 1/u, so does
the pressure (see the “‘special intermediate’ case in Table 4).

Finally, in the veryfarfield, the pressure will decay to a level comparable
to either a material strength Y, or perhaps to some initial pressure P, as
in an air-blast analysis. Then the peak pressure also depends on this
additional stress measure, as shown in the final column of Table 4.

It is important for the reader to remember that the scaling powers of
these laws use exactly the same exponent g as the size scaling. Thus, for
nonporous material such as rock or water, the appropriate value is about
1t = 0.55. Recent papers by O’Keefe & Ahrens (1992a,b) have verified that
fact by a suite of code calculations of the cratering dynamics for generic
nonporous materials. (Once one accepts the governance of the point-
source solution, then a single calculation at any suitable size and velocity
suffices Lo define all of the point-source solution regime.) The reader can
refer to these papers for specific numerical forms for those materials for
the scaling laws given here.

4.4.2 DYNAMIC CRATER GROWTH The scaling of any length scale is
shown in the last row of the Table 3. It can be applied to the transient crater
growth history (Holsapple 1984, Holsapple & Schmidt 1987). During the

'2The literature is full of errors regarding this point. Some assume that the timc scalc and
rise time of the far-field pulse is ¢/U, which in fact can only hold very near the impactor, as
shown in the appropriate row of Table 2. Away from the impact point, every dependence
on the impactor conditions must be in a combined form aU*.
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initial regime the projectile buries itself in the planet at a constant velocity
equal to the particle velocity behind the shock as determined by the jump
conditions. Therefore, the projectile/planet interface surface moves at a
constant velocity in this “penetration’ regime. After a distance of just over
one projectile radius the transition to the point-source solution is apparent,
and the interface moves according to the power of /(1 + p) in time, as in
the first column of Table 4. That slope governs until just before the crater
begins to slow its growth at thc maximum transient depth. After maximum
depth is achieved, there is a rebound of up to a factor of two to the final
observed simple crater depth. Figure 12 (reproduced from Holsapple &
Schmidt 1987) clearly demonstrates these regimes and, further, shows the
commonalty of the dynamic growth in a wide variety of different materials
when scaled according to these laws, and provides numerical values.
O’Keefe & Ahrens (1991) clearly identify these same results for a single
material in a suite of code calculations at various impactor sizes and
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Figure 12 The growth of transient crater depth with time from experiments and calculations
for a variety of conditions. In this scaled form all follow a common path, with an early
time “‘penetration” regime and an intermediate time *‘point-source” regime. The growth is
ultimately arrested by either a material strength or the gravity, depending on the conditions.
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gravities. O’Keefe & Ahrens (1992b) give many numerical formulas for
these specific forms for that material.'?

5. CATASTROPHIC IMPACTS

The catastrophic disruption of asteroids and other solar system bodies is
another inevitable consequence of energetic impacts, and another impor-
tant application of impact scaling. Theories of collisional fragmentation
are at present more speculative than for cratering. Most of our knowledge
of such events is based on experimental results. Unfortunately, due again
to practical constraints, the experiments are conducted at size and velocity
scales that are vastly different from those appropriate to collisions involv-
ing asteroids or satellites. Therefore the results must be extrapolated using
scaling rules.

Scaling rules that guide the extrapolation of small-scale results can be
based on the same concepts as for cratering. The most common scaling
method in the previous literature assumes that collisional outcomes (e.g.
normalized fragment size and velocity distributions) are determined by the
energy of the event divided by the mass of the target body, i.e. by the ratio
Q = E[M. A specific value Q, determines the threshold for catastrophic
disruption, which is defined as when the largest remaining fragment is 1/2
the size of the original body. This threshold specific energy for target
fragmentation is typically assumed to be independent of target size and
impact velocity. That approach mirrors the older energy-scaling assump-
tions for cratering. In addition, it is implicitly based on an assumption
that the asteroid strength is independent of size and rate. On the basis of
a variety of experimental and theoretical evidence, it now appears that
neither of these conditions should hold, thereby casting serious doubt on
the validity of using Q as the sole parameter in scaling.

For cratering, the predominant strength measure is the yield function
that limits shear stresses, as for example, a Mohr-Coulomb law. In
contrast, the disruption of entire bodies is governed more by a tensile
fracture strength measure. For geological materials such as rock and
for other brittle materials, fracture strength is typically highly strain-rate
dependent. In addition, for large bodies gravitational self-compression

*While they also give results for final crater size, it is difficult to predict final outcomes
using numerical approachcs. This author belicves that the code approaches are better believed
for study of the earlier regimes of impact processes, and for relative comparisons of different
conditions; not for absolute measures of the final outcome. In particular, codes have extreme
difficulty in calculating impact processes for any material with porosity.
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deters fragmentation. Both factors must be accounted for in developing
scaling theories for catastrophic disruptions.

Holsapple & Housen (1986) and Housen & Holsapple (1990) have
considered this problem in detail. The interested reader is referred to these
references for the complete analysis and discussion. The situation is similar
to the scaling above for cratering. As long as the impactor is relatively
small compared to the body being impacted, then the coupling parameter
measure can be adopted, greatly simplifying the dependence on the impac-
tor conditions. (While this becomes more of a problem than for cratering,
catastrophic disruptions typically occur with the impactor to impacted
body diameters in the ratio of about 1:10.)

Again there are two obvious regimes. For smaller bodies gravitational
attractions between the parts of the body can be ignored. (Typically these
are for asteroids small enough to be nonspherical.) Then one can assume
a single measure for the strength of the body. However, as mentioned
already, that measure should now be rate-dependent.

The fracture of brittle materials is a consequence of the growth and
coalescence of an initial distribution of various sizes of small flaws and
cracks. At any material point, all cracks with a length greater than some
critical length—which depends on the instantaneous stress level—will be
activated and growing. Fracture occurs whenever any crack lengths are
able to grow to their inter-crack spacing, and that spacing will determine
the dominant fragment sizes.

In a simple constant strain-rate test, the resulting fracture strength based
on this model is in accord with the common strain-rate dependent model

e = SE'I, (30)

where thc cxponent # is given by the original crack size distribution, and
the coefficient S is a material constant. (The model also predicts fracture
strength for more general stress histories, when the strength is not simply
proportional to a power of the instantaneous strain rate.) Holsapple &
Housen (1986) then used this material measure S for the resisting measure
for disruption, together with the coupling parameter as the measure of the
input, to determine a variety of scaling results. A further dependence on
gravitational forces was allowed, and it dominates for the larger bodies.
One of the more fundamental results is shown as Figure 13, for the
threshold specific energy dependence on target body size, as presented in
Housen et al (1991). [This figure supersedes the earlier estimates given in
Housen & Holsapple (1990); it is based on the theory and recent experi-
ments.] In contrast to the energy-scaling, constant strength approach, the
inclusion of a rate dependence for the fracture strength makes the threshold
specific energy Q decrease for increasing target size in the strength regime,
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due to the fact that the larger events have a correspondingly slower stress
pulse and thus a weaker governing strength compared to small laboratory
events. Then, for bodies more than about 2 km in diameter, the gravi-
tational forces become the dominant factor, and the threshold energy
required again increases.

6. CONCLUDING REMARKS

Much has been learned about scaling over the past decade. Much of that
progress is based on the rccognition of the point-source approximation as
the appropriate simplifying assumption that leads to the power-law results
empirically observed; and, as a consequence, the earlier energy-scaling
assumptions are replaced with the coupling parameter measure approach.
However, there remains much to be learned. The theories presented here
are only of first order—a “‘child’s garden of scaling.” The specific scaling
laws are generally based on two ingredients: a choice of the measure of
the “input” (i.e. the coupling parameter measure of the impactor), and a
choice of a single measure of a “resistance” (c.g. a single strength or
gravity). Many complicating factors exist which are not presently quanti-
fied, and will lead to future research.
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More study is certainly needed about:

1. Scaling when the crater becomes so small compared to the impactor
that the point-source assumption is not appropriate;
2. Atmospheric effects such as might be important on Venus and the
Earth;
3. Facets of cratering such as the melt and vapor produced in the near
field that are not governed by far-field scaling;
4. Layered and inhomogeneous targets, which must affect the immense
transient depths of large craters, or for impacts into the ocean floor;
5. Very small craters where surface tension and viscosity of the material
play roles;
6. Impacts on the icy satcllites;
7. Subsequentcreep mechanisms of materials including ice, and how they
change the observed craters;
Highly oblique impacts;
9. Verylow speed interactions of reaccumulation processes and planetary
growth;
10. Dispersed impactors, such as asteroids or comets fractured during
atmospheric penetration;
11. The gravity modification stage for complex craters and for the very
large basins and ring structures;
12. Impacts of comparable sized bodies;
13. Details of escape mechanisms for near surface material.
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