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Many volcanic edifices have a remarkably symmetric geometrical form. An example is Mount Fuji in Japan. We
model this form assuming that the surface of the volcano is a surface of uniform hydraulic potential; that an erupting
magma will follow the path of minimum resistance to the surface. In order to model the resistance to fluid flow we
assume the volcanic edifice is a uniform porous medium. The vertical flow of magma is also resisted by the gravitational
body force. If the volcano becomes too tall flank eruptions will widen it; if the volcano becomes too wide summit
eruptions will increase its elevation. Using the Dupuit approximation for an unconfined aquifer it is shown that the
percolation equation is applicable. As magma reaches the surface it is assumed to extend the solid, porous matrix. A
similarity solution is obtained to this moving boundary problem. The solution predicts a uniform shape for all
volcanoes. This shape is shown to be in excellent agreement with the geometrical form of Mount Fuji.

1. Introduction

The geometrical form of many volcanic edifices
exhibits a remarkable symmetry. A large fraction
of the composite volcanoes associated with sub-
duction zones have a near constant slope on their
flanks and a form that is concave upwards near
their summits. Examples include Mount Fuji in
Japan and Mount Mayan in the Philippines. The
large shield volcanoes of the Hawaiian Islands also
exhibit circular symmetry with a near constant
slope. Moana Loa is probably the best example. It
should be emphasized, however, that a number of
phenomena can lead to non-symmetrical edifices.
These include parasitic centers of volcanism on the
flanks, glacial and other types of erosion, and
explosive eruptions.

John Milne travelled to Japan in 1875 to be-
come Professor of Mining Engineering at the Im-
perial Institute of Technology. He was fascinated

by the geometrical form of the composite volcanoes
of central Japan. He proposed [1,2] that the ob-
served form was the result of slope stability. He
applied soil mechanics theory and carried out ex-
periments with granular material to reproduce the
observed form. His approach is likely to be appli-
cable to cinder cones or small volcanoes con-
structed primarily of ash flows but not to edifices
composed of a large number of lava flows. Becker
[3] extended the analysis to slope stability based
on rock mechanics.

In this paper we propose that the hydraulic
resistance to the flow of magma determines the
geometrical form of volcanoes. The surface of the
volcano is a surface of constant hydraulic poten-
tial. In order to model the flow of magma through
the volcanic edifice we assume it is a uniform
porous material. Each flow passes through the
interior of the edifice, reaches the surface, and
extends the surface as it solidifies.
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2. Model

We assume that a volcanic edifice is the con-
structional sum due to the solidification of many
small lava flows. The way in which these flows
extend the edifice is illustrated qualitatively in
Fig. 1. In this idealized model magma reaches the
center of the base of the edifice through a volcanic
pipe. It is recognized from studies of groundwater
migration that volcanic edifices are permeated by
fractures and joints. Presumably these are pri-
marily thermal contraction cracks formed during
the cooling of individual flows. In some volcanoes
the permeability of the structure is dominated by
rift zones and most surface volcanic flows emanate
from these rift zones.

We assume that the magma is driven through
the pre-existing matrix of channels in search of the
least resistant path to the surface. This is il-
lustrated in Fig. la. In Fig. 1b the magma at one
point reaches the surface. This will be the point on
the surface where the hydraulic resistance to the flow
is a minimum. The magma reaching the surface
will result in a surface flow which covers part of
the surface extending the volcanic edifice (Fig. Ic).
The flow will increase the hydraulic resistance of
that part of the edifice and the next eruption will

Fig. I. Migration of magma through a volcanic edifice during
an eruption. (a) Magma migrates outward from the source pipe
at the center of the volcano, the dashed line represents the
equipotential surface of the advancing magma. (b) The magma
reaches the surface at the point of minimum resistance to the
flow. (¢) The volcanic edifice is extended by the surface flow.

occur at another point on the surface. If a volcano
grows too tall flank eruptions will widen it; if a
volcano grows too wide summit eruptions will
increase its elevation. The equal resistance to flow
requires that the volcano grows symmetrically as
many individual eruptions are averaged.

To model the hydraulic resistance of the volcanic
edifice we assume that it has a uniform hydraulic
permeability. The flexure of the initial surface due
to the load of the volcano is neglected. In order to
simplify the analysis we assume that the slope of
the volcanic edifice is small, 34 /0r << 1, where h
is the height of the volcano as a function of the
radial coordinate r. The problem is essentially the
same as the flow in a porous, unconfined aquifer.
The small slope assumption allows the use of the
Dupuit approximation [4] and the radial flow of

magma Q, is given by:
2wkp,grh 3h
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(1)
where u_ is the radial Darcy velocity (the mean
velocity per unit area, not the flow velocity in
magma tubes and channels), & is the permeability,
p the magma density, p the magma viscosity, and g
the acceleration of gravity.

In accordance with our hypothesis Q. is the
mean radial flow of magma averaged over a large
number of eruptions. Since the inertia of the
magma is negligible it is appropriate to apply a
steady-state analysis to this problem even though
each actual flow only penetrates a small fraction
of the porous edifice.

The permeability & is the actual permeability of
the magma tubes and channels during the erup-
tion. A radial mass balance requires that:

dh a0,
2ar i (2)
The volcano grows in elevation at the expense of
the radial flow. Substitution of (1) into (2) gives:

on _ kpng a( ah) 6)

rh—
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This is known as the perculation or Boussinesq
equation. We assume that as the magma reaches
the surface it solidifies and becomes part of the
porous matrix.
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3. Methods of solution

In order to solve the perculation equation for
this problem we introduce the following similarity
variables:

where Q, is the value of Q, at r=0, it is the
magma supply rate. Substitution of (4) and (5)
into (3) gives:

B+ (PP + A+ =0 (©)

where f'=d f/dé.
The boundary condition on the magma supply
requires that:

27kp,grh dh
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In terms of the similarity variables, (4) and (5),
this can be written:

§ﬂ’—>——§as$—>0 (8)

The condition that the flowing magma adds to the
structure of the edifice makes this a moving
boundary problem. The boundary condition is the
same as that applied to the Stefan problem [5]. We
denote the radius of the base of the volcanic
edifice as r,. From (5) we obtain:

1/4
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where £, is the non-dimensional radius of the

volcano. From (9) we see that the width of the

volcano grows proportional to the square root of

time. Taking the time derivative of (9) we obtain:

u :%:l kpmgQ_O)'ﬂi (10)
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However, the velocity of the edge of the volcano is
also given by (1):
_kpng 3n

Uy = T or (“)
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Fig. 2. Dependence of the non-dimensional height on the non-
dimensional radius.

And introduction of the non-dimensional vari-
ables, (4) and (5) gives:

1/4 ’
Equating (10) and (12) gives:
ff=—1itatt=¢, (13)
but H=0 at r=r, so that:
f=0at{=¢§, (14)

The required boundary conditions on (6) are given
by (7), (13), and (14).

Since (6) is a rather complicated ordinary dif-
ferential equation a numerical solution is required.
The solution is obtained by guessing a value for
£, fand [’ at £ = § are given by (13) and (14), f”
is determined from (6), new values of /" and f at
E=¢, — 8¢, 7 (&, — 8%) is determined from (6),
and the process is repeated to determine f, f*, and
" as a function of & The process is repeated for
various values of &, until (8) is satisfied. We find
that £, = 1.16. The solution for f as a function of §
is given in Fig. 2. Near the origin the solution has
a weak logarithmic singularity. Since the Dupuit
approximation requires that the slope be small, the
solution is not valid in the vicinity of the origin. In
this region a two-dimensional solution is required.

4. Results

The profile given in Fig. 1, although universal,
can be scaled vertically an arbitrary amount. The
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Fig. 3. Comparison of the porous flow theory (circles) with the geometrical form of Mount Fuji, Japan (solid line).

flank slope can be adjusted until a best fit is
obtained. Mount Fuji in Japan is considered to
have the typical form of a stratovolcano. In Fig. 3
a cross section of Mount Fuji is compared with
our universal profile. In general the agreement is
quite good. Near the base the observed profile is
more rounded. This can be attributed to deposits
of alluvium. The theory is not expected to be valid
near the summit where the solution is singular.

The above theory also predicts the dependence
of such quantities as volcanic radius and flank
slope on the parameters. Taking £, =1.16 the
radius of the volcano from (9) is:

( kpmgQu )1/4!"/’2
I

ro =1.16 (15)

From (4) and (5) the slope is given by:
h _ (2 )”"Qw_f_

or \kpg 0 72

And from (13) the slope at £ =§; is:

o . oy
=] =— 17
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Taking the negative product of (15) and (17) gives
a reference height for the volcano:

1/2
h, :0.673( “—Q“) (18)
kpg

We see from our analysis that the reference height
is independent of time. Our theory suggests that
volcanoes grow primarily by an increase in their
radius once they reach the critical height. And the
radius increases with the square root of time.
Since the reference height from (18) is a func-
tion of flow rate and permeability, it is not possi-

(16)

ble to draw absolute conclusions regarding the
dependence of height on such parameters as grav-
ity and viscosity. The flow rate will depend on the
hydraulic head available to drive magma through
the edifice. It has been suggested [6] that this head
depends upon the thickness of the lithosphere
beneath the volume. If, however, the flow rate and
permeability are constant we conclude from equa-
tion (18) that the reference height of volcanoes
depends upon g ~'/2. The ratio of the gravity field
on Mars to that on earth is 0.38. Therefore, it is
predicted that the ratio of volcanic height on Mars
to the height on the earth is 1.62. The height of the
highest volcanoes on Mars is about 21 km above
the Mars reference surface. The height of the
Hawaiian shield volcanoes is about 10 km with
respect to the sea flow. Although many factors
undoubtedly influence the height of volcanoes, the
influence of gravity and viscosity on the flow
through the volcanic edifice may play an im-
portant role.

We believe that the simple, symmetrical form of
many volcanic edifices indicates that a simple
physical mechanism may dominate the construc-
tion of such edifices. In this paper we propose a
porous flow model to represent the resistance to
the flow of magma through the edifice. The surface
of the volcano is predicted to be an equipotential
surface for the flow of magma through a uniform
porous medium. A similarity solution to the prob-
lem is obtained which predicts a uniform shape for
volcanoes.

Clearly much work remains to be done in re-
fining the proposed model. A two-dimensional
numerical solution for the flow would remove the
singular behavior near »r=0. For large volcanic



edifices the weight of the overburden may reduce
the permeability at depth. Such a decrease with
depth can be incorporated into the model.
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