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Figure 9.1. Log—log plot of strain rate as a
function of differential stress, illustrating the
strength of coarse-grained polycrystalline ice
relative to that of single crystals of ice oriented
for slip on the basal plane and single crystals of
ice oriented for slip on non-basal planes. Note
that the differential stress required to deform
polycrystalline samples at a given strain rate
lies between the values for slip on the hard and
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|
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easy slip systems in ice. Comparison of the
slopes. that is, the stress exponent 7, in
Equation (9.6), of these three lines suggests that
slip on non-basal systems controls the rate of
deformation, while the relative positions of the
lines indicates that basal slip contributes 10‘14

significantly to flow. Modified from Goldsby 10‘2 1 0‘1 1 OO
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Figure 9.2. Log—log plot of viscosity as a
function of differential stress for fine-grained
polycrystalline ice with grain sizes of 8, 32,
128, and 512 um. The flow law for
coarse-grained ice deforming in the dislocation
creep regime is indicated by the dashed line of
slope n = 4.0, while the flow law for single
crystals of ice oriented for slip on the basal
plane is included as a dot-dashed line of slope
n = 2.4. Between these two bounds,
polycrystalline ice flows by grain boundary
sliding accommodated by dislocation
movement in the dislocation — grain boundary
sliding regime characterized by a slope of
10‘10 S 1 n=1.8.
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Figure 9.3. Log—log plots of viscosity as a function of grain size at (a) fixed
differential stress of 1 MPa and (b) fixed temperature of 200 K. Dislocation creep
dominates the viscosity at large grain sizes (shaded regions on the right of (a) and
(b)). while dislocation — grain boundary sliding creep dominates at smaller grain
sizes. Strain rate is independent of grain size (p = 0) in the former regime. while
strain rate increases with decreasing grain size in the latter regime (p = 1.4). In (a).
the transition between the two regimes occurs at smaller grain size with increasing
temperature. In (b). the transition between the two regimes occurs at smaller grain
size with increasing differential stress.
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Figure 9.4. Log—log plot of strain rate as a function of grain size at a constant dif-
ferential stress of 0.1 MPa for temperatures both below and above the pre-melting
temperature of ~255 K. The temperature interval between constant-temperature
curves is 25 K. With increasing temperature between 170 and 245 K, the contours
become progressively closer. However, the spacing between the curve for 245 K
and the curve for 270K is significantly wider than that between the curves for
220 K and 245 K., reflecting the marked increase in activation energy from ~50 to
~180 kJ/mol in crossing the pre-melting point.
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dislocation creep
finer grained dunite
T=1300°C
c=0.1 MPa
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Figure 9.11. Semi-log plot of viscosity versus pressure for dunite in the dislo-
cation creep regime. Under anhydrous (dry) conditions, viscosity increases with
increasing pressure based on an exponential dependence of strain rate on pressure,
Equations (9.5) and (9.6). Under hydrous (wet) conditions. viscosity decreases
with increasing pressure due to the approximately linear dependence of strain rate
on water fugacity, Equation (9.13b), since water fugacity increases with increas-
ing pressure under water-saturated conditions (e.g., Pitzer and Sterner, 1994). This
implicit effect of water fugacity on viscosity with increasing pressure is offset to
some degree by the explicit exponential increase in viscosity with increasing
pressure in Equation (9.13b).
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Figure 9.13. Log—log plot of strain rate versus differential stress illustrating the
effect on creep rate behavior of increasing iron content in olivine. Based on
Figure 9.12, at a given stress, the strain rate increases as iron content increases.
In addition, water solubility increases with increasing iron content, thus further
increasing the strain rate.
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diffusion creep
d=1mm
T=1250°C
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Figure 9.17. Semi-log plot of viscosity as a function of melt fraction for the
diffusion creep regime. The dashed line is based on Equations (9.31) and (9.32)
for® = 35°. The solid line is an empirical fit of experimental data to Equation (9.34)
with @ = 25. The dot-dashed line is an extrapolation to higher melt fractions using
the Einstein-Roscoe relationship in Equation (9.35). The shaded region identifies
the rheologically critical melt fraction for the olivine plus basalt system based on
experiments by Scott and Kohlstedt (2006).
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Figure 9.5. Strength envelope plotting rock Differential stress (MPa)
strength as a function of depth in the Earth for 500 1000 1500
typical oceanic lithosphere deforming at a strain =

rate of 107'%s7!. An oceanic geotherm from

Turcotte and Schubert (1982) for 60 m.y.

lithosphere is assumed. The basaltic composition Srshme

crust of 6 km thickness deforms by frictional LITHOSPHERE

sliding, modeled using Byerlee’s law. The crust
overlies a dry mantle lithosphere, which extends
to 80 km depth and is modeled using rheological
properties for dry olivine. The zone between
approximately 10 and 38 km (the dotted line) is
characterized by semi-brittle behavior. Below
80 km, a wet olivine rheology is used to model
the asthenosphere, following Hirth and Kohlstedt Wet
(1996). The inset shows the contrast in strength
between stiff dry lithosphere and convecting wet
asthenosphere.
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Figure 9.6. Strength envelope plot showing rock
strength as a function of depth in the Earth for a
model continental lithosphere deforming at a strain
rate of 10~ s~!. A continental geotherm from
Chapman (1986) for a surface heat flow of 60
mW/m was assumed. An upper crust of wet
quartzite deforms at shallow depths by frictional
sliding, and greater depths by dislocation creep. A
dry lower crust (at amphibolite—granulite
metamorphic conditions) composed of gabbroic
composition rocks is modeled using rheological
properties for dry diabase. Deformation in the
olivine-rich mantle lithosphere is modeled by
dislocation glide of dry olivine to about 60 km
depth and by dislocation creep of dry olivine at
greater depths. Semi-brittle regions exist in both
the upper crust and lower crust: these regions are
bounded below by the Goetze criterion.
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Figure 9.7. Strength envelope plotting rock strength as a function of depth in Venus
for a lithosphere deforming at a strain rate of 107> s~!. We assumed a surface
temperature of 470 °C, a thermal gradient of 10 K/km., and a crustal thickness of
20 km, conditions believed to be appropriate for Venus. A dry crust of basaltic
composition was modeled at shallow depths by a frictional sliding law (Byerlee’s
law) and at greater depths by rheological properties for dry diabase deforming
by dislocation creep. A significant region of semi-brittle behavior controls defor-
mation over much of the crust. Rheology properties for wet diabase. included for
comparison, predict an unrealistically weak crust for Venus. The mantle litho-
sphere, which is presumed to be strongly depleted in water, is modeled using
rheological properties for dislocation glide (to about 30 km depth) and dislocation
creep (at greater depths) for olivine under dry conditions. Due to long-term water
loss from the mantle, no wet asthenosphere is expected on Venus.
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0 Neeslaw Figure 9.8. Strength envelope plotting rock strength as a function of depth in
! 1500 Venus to illustrate the effects of variation in (a) crustal thickness, (b) strain
4 rate, and (c) thermal gradient by comparison to the boundary conditions used in
Figure 9.7. Increasing crustal thickness resulted in a somewhat weaker lithosphere
overall, while both increased strain rate and decreased thermal gradient strength-
ened the lithosphere. However, despite these changes in overall strength, all models

still predict a strong lithosphere and strong mechanical coupling between crustal
and mantle regions.
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A Historical Perspective for Tectonics
Research in Past Decades

Before 1960: The dark age.
1960s: Invention of plate tectonics.

1970s: Testing and Confirming Plate Tectonics in oceanic
domains and ancient orogenic belts.

1980s-pesent: Realization and investigation of how and why
active continental deformation differs so significantly

from oceanic deformation.

Major testing grounds: Asia and western North America.
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Plate tectonics: Rigid plates moving in the outer layer of the Earth

Mid-Atlantic Ridge

Asthenophere ~ '

Mantle

—

Quter core
/——,—'\\x\
/ S
/ Inner core \

gl‘ \ )

It works best for the oceanic plates,
but quite poorly in parts of continents!
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Sharp Plate Boundaries in the Oceanic Domain
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Very Wide Plate Boundary Zones in Continental Domain
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Seismicity in Tibet
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Models of Continental Deformation

Micro-plate model Thin Viscous Sheet Model
‘_ gj{."?i‘TectoniQU‘tiswi |

Crustal thickness, t = 50 m.y. IRioldv-thhoonucEntunBoundcy

(a)n=3,Ar=1, ngld(whnlcvdl) (c)n =3, Ar = 1, Lithostatic

100
25

100

2

(b)n=10,Ar= 3.Hgld(10kmhveb) (d) n = 10, Ar = 3, Lithostatic

Normal vs Oblique Southern Boundary / Tarim Basin / n=3, Ar=1

100 = 1.50
ﬂ -

.80
)

Tectonic Extrusion ! !

(b) Crustal thickness (10 km levels)

(d) Vertical Strain- rate( .5 %/m.y. )

A. (Peltzer and Tapponnier, 1988; Tapponnier et al., 1982).

B. Two stage extrusion model (Tapponnier et al., 1986).
Houseman and England, 1996
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Predictions of the two models:

Micro-plate Model (also known as the “extrusion model”): A few large
faults with fast slip rates bounding little deformed continental blocks. —
Kinematic Problem

Thin Viscous Sheet Model (also known as the ‘‘distributed deformation
model’’): All faults were created equal, each having small displacement
and slow slip rates. Overall deformation field can be approximated by
viscous flow. — Dynamic Problem and Need to Know Rheology

We leave this debate for later discussion and examine
first some of the fundamental problems in rock
mechanics.
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Conjugate faults created by Coulomb fracture
experiments

From Andreas Kronenberg’s website at Univ. Texas A&M
http://geoweb.tamu.edu/Faculty/Kronenberg/K615.html

Two shear fractures formed at
309 angle from the maximum
compressive stress direction
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V-shaped Conjugate Strike-slip faults in Asia
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Planetary Radius
6048 6050 6052 6054 605

From USGS
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A

Figure 3. (A) Location of the Lakshmi in Ishta
Terra in northern hemisphere of Venus, from
lvanov and Head (2008). Northward motion
of Lakshmi planum created the Freyia Mon-
tes in front of the indenter and V-shaped
conjugate strike-slip systems to the north
(B) and and the east (C).
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V-shaped Conjugate Strike-slip faults in Asia

Africa
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Active Central Tibet Conjugate Fault Zone
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After Taylor et al. (2003, Tectonics)
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Tibetan Conjugate Faults:

1. Initiated at ~ 14-8 Ma, with
8-12 km slip.

2. Major faults are spaced at
~100-150 km and currently
active.

3. Bangong-Nujiang suture
(BNS) divides the left-slip
faults to the north and right-
slip faults to the south

After Taylor et al. (2003, Tectonics) 5. Little deformation in fault-
bounded regions.
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Without basal boundary conditions, all analogue models
fail to predict Tibetan conjugate fault geometry

Observed fault orientations
in central Tibet

N5°W-trending
Bangong-
Nujiang

Peltzer (1988)
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Fault Rotation by bookshelf faulting
or Distributed Deformation

>100 km fault slip on >4(0 % north-south shortening
individual faults after fault formation

1-(tana x tana’)"™

tana

Bookshelf-style faulting Distributed deformation
(e.g., Freund, 1970) (Dewey et al., 1989)
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Experimentally, there are two ways to make
faults: “pure shear” (i.e., co-axial deformation)
and “‘simple shear” (i.e., non-coaxial
deformation) with different velocity boundary
conditions.

Pure-shear deformation Simple-shear deformation

Ry

\/ 7 ©
—/ —
/N | Rﬁq =

HRN
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Coulomb shear fractures formed
by coaxial (pure-shear)
deformation

_ l
3
I

Initiation of shear fractures
controlled by stress

Riedel shear fractures formed by
non-coaxial (simple-shear)
deformation

Initiation of shear fractures

controlled by strain/strain rate
(= flow!)
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Analytical Approximation for GPS Velocity Field

u (x=-h/2) =U,
v (x=-h/2) =V,
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Strain-rate Field in Central Tibet
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Predictions of the two models:

Micro-plate Model (also known as the *‘extrusion

model’): A few large faults with fast slip rates bounding little
deformed continental blocks.

Thin Viscous Sheet Model (also known as the ‘distributed

deformation model”): All faults were created equal, each
having small displacement and slow slip rates. Overall
deformation field can be approximated by viscous flow.

We can now return to the debate: The development of V-shaped
conjugate faults requires the presence of a paired simple shear
zone or a modified Hagen-Poiseuille flow with two walls
approaching each other.
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V-shaped Conjugate Strike-slip faults in Asia
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We can gain insight into the driving mechanism by
examining our analytical form of GPS velocity field:

S-U, 5 . 2
1 1 —x(h” -4y°)+U
Velocity Field T :

Strain-rate Field
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Assume (1) conservation of mass and (2) horizontal
velocity field does not vary with depth, we obtain
vertical strain rate, velocity, basal shear, and
pressure gradient

(/"’ ? y
Db —4vT)z+ f(xv)
Lh~

Stress equilibrium in
vertical direction
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1. Eastward basal shear at the base of the
deforming layer in central Tibet:

2. Eastward decrease in pressure gradient and
lithospheric thickness:

Ru(S§-Uy) ,
s —0 x
pelh~

Tl
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Thus, two possible driving
I ERTEINIS

> Shear at the base of Tibetan crust or
lithosphere.

» Lateral gravitational spreading (thicker
crustal region spreads to thinner crustal
region).
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Kumar et al. (2006)
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Shear-wave slitting time across Tibet (sec)
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Is orientation of fault formation
controlled by state of strain?

Pure-shear deformation
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If strain/strain rate controls orientation of fault
formation, we can also explain other odd faults
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Normal Faulting T'hrust Faulting

Strain controlled fault Stress controlled fault
formation pattern formation pattern
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Testing the two continental-deformation models:

Micro-plate Model (also known as the “extrusion model”): A few large
Jaults with fast slip rates bounding little deformed continental blocks.

Thin Viscous Sheet Model (also known as the ‘‘distributed deformation
model’’): All faults were created equal, each having small displacement
and slow slip rates. Overall deformation field can be approximated by
viscous flow.

Flow is not only a convenient way of describing large parts of
continental deformation, but is required for the formation of
a widely distributed odd fault systems that we termed V-
shaped conjugate strike-slip faults. This new understanding
also requires reevaluation of the fault-initiation

mechanisms.
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Whipple Detachment Fault System

Figure 5.13 Faulting in the Whipple

Mio. — Plio. Osborne Wash fm Mountain metamorphic core complex of
B 355, oS, Cormon nd the Basin and Range province, southeast-
[L] upper-plte crystatinerocks ern California. A. Map of the Whipple

Mountains metamorphic core complex.

Whipple detachment
fault

B. Diagrammatic cross section through the
Whipple Mountains before uplift domed

Mylonitic the detachment fault. C. The Whipple
' . \
% Mountain detachment fault (arrow) is

marked by a topographic ledge of cata-
clastic rocks (see Figure 4.5B) along which
the dark-colored tilted Tertiary strata are
faulted against the underlying, lighter-

colored mylonitic gneisses.
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1. Eastward variation
of basal shear traction
as a function of
viscosity.

Eastward Basal Shear Traction (Pa)
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Distance from west to east (km)

- 1. Eastward variation
_1H;; vmmm* ° °
.. of lithospheric
thickness as a

function of viscosity.
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