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ABSTRACT

We present models of the shapes of four Kuiper Belt objects (KBOs) and the Jovian Trojan asteroid (624) Hektor
as ellipsoidal figures of equilibrium and Roche binaries. Our simulations select those figures of equilibrium whose
light curves best match the measured rotational data. The best-fit shapes, combined with the knowledge of the spin
period of the objects, provide estimates of the bulk densities of these objects. We find that the light curves of KBOs
(20000) Varuna and 2003 EL61 are well matched by Jacobi triaxial ellipsoid models with bulk densities 992þ86

"15 and
2551þ115

"10 kg m"3, respectively. The light curves of (624) Hektor and KBO 2001 QG298 are well described by Roche
contact-binary models with densities 2480þ292

"80 and 590þ143
"47 kg m"3, respectively. The nature of 2000 GN171 remains

unclear: Roche binary and Jacobi ellipsoid fits to this KBO are equivalent but predict different densities, #2000 and
#650 kg m"3, respectively. Our density estimates suggest a trend of increasing density with size.
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1. INTRODUCTION

Most small bodies of the solar system appear unresolved at the
#0.0500 peak angular resolution offered by current technology. As
a consequence, information about the shapes and rotations of the
small bodies must be inferred, principally from measurements of
the time dependence of the scattered radiation. So-called light-
curve inversion techniques have been used for decades to study
the rotational properties of main-belt asteroids (Cellino et al.
1989; Kaasalainen et al. 2002). At their simplest, these involve
using the peak-to-peak interval of the light curve to estimate the
rotation period and the peak-to-peak brightness variation to es-
timate the axis ratio of bodies that are assumed to be triaxial in
shape and in principal-axis rotation about the minor axis. At their
most complex, the inversion techniques can be used to solve for
the full three-dimensional shapes and rotation vectors, using ob-
servations from a range of aspect angles (Kaasalainen & Torppa
2001; Kaasalainen et al. 2001).

All light-curve interpretations are subject to an ambiguity
between variations caused by shape and variations caused by non-
uniform surface albedo, as clearly expressed a century ago by
Russell (1906). This ambiguity can be broken when simulta-
neous optical and thermal observations are available, as is the
case for some of the larger asteroids in the main belt. Numerous
observations of this type have shown that, with rare exceptions,
the albedos of the asteroids do not vary over their surfaces by a
large amount (Degewij et al. 1979). This spatial uniformity could
simply mean that the compositions are intrinsically uniform. Al-
ternatively, real surface compositional variations could exist but
be smoothed out by efficient lateral transport of dust over the sur-
faces of small bodies. The most famous exception to this rule is
provided by Saturn’s satellite Iapetus, which has a light-curve
range of nearly 2 mag caused by surface albedo markings (Millis
1977). This case is pathological, however, in the sense that it ap-
pears to be a result of Iapetus’ synchronous rotation about Saturn,
which leads to unequal radiation and micrometeorite bombard-
ment fluxes on the leading and trailing hemispheres of the satellite.
This special geometric circumstance is presumably not relevant to
the case of small bodies in heliocentric orbit.

In the outer solar system, lower temperatures and greater dis-
tances make the detection of thermal radiation increasingly chal-
lenging, even with the most sensitive infrared satellites in space
(e.g., Cruikshank 2005). Consequently, only the reflected light
curve is available, and the interpretation must be based on the as-
sumption that the surface albedo variation is minimal. As we
describe below, support for this assumption comes not only from
the analogy with the (generally uniform) main-belt asteroids, but
from the remarkably symmetric light curves displayed by most
outer solar system objects. Rotational symmetry is expected for
figures of equilibrium having uniform surface albedos but is not
a natural consequence of surface albedo markings.

The light curves of several large Kuiper Belt objects (KBOs),
notably (20000) Varuna (Jewitt & Sheppard 2002) and 2003 EL61

(Rabinowitz et al. 2006), suggest that these are high angular mo-
mentum bodies in which the shape has been deformed by rapid
rotation.Other objectsmay be contact binary systems, as has long
beensuggestedforJovianTrojanasteroid(624)Hektor(Hartmann&
Cruikshank 1978, 1980;Weidenschilling 1980) and, recently, for
KBO2001QG298 (Sheppard& Jewitt 2004; Takahashi& Ip 2004).
These systems are interesting since, under conditions of rotational
equilibrium, theperiod and the shape (bothof which canbe inferred
from light-curve data) are uniquely related to the bulk density. Light
curves of these objects may thus be interpreted in terms of a fun-
damental geophysical property that is otherwise difficult tomeasure.

In this paper, we discuss the light curves of specific solar sys-
tem bodies in terms of rotational equilibriummodels, paying par-
ticular attention to high angular momentum systems and contact
binaries. Our models address the effects of the surface scattering
on the derived system parameters. Prototype contact binary (624)
Hektor is examined in detail, taking advantage of voluminous high-
quality data published for this object over a range of aspect angles
(see Table 1). The models are then applied to four well-observed
KBOs (Table 2) and used to place quantitative constraints on their
properties in a consistent formalism. Indeed, the uniformity of ap-
proach is one of the strengths of our simulations.

2. LIGHT-CURVE SIMULATIONS

2.1. Jacobi Ellipsoids

The formalism associated with the ellipsoidal figures of equi-
librium is described in great detail in Chandrasekhar (1969). A

1 Also at GAUC, Departamento de Matemática, Universidade de Coimbra,
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homogeneous, fluid body spinning in free space will assume a
shape that balances self-gravity and the inertial acceleration due
to rotation. This means that the triaxial shape of such a body is a
function of its spin frequency and density. The equilibrium fig-
ures of isolated, rotating bodies are the Maclaurin spheroids and
the Jacobi ellipsoids. The former are oblate spheroids and the
latter are triaxial ellipsoids, and in both cases the rotation is about
the shortest physical axis. We are interested only in the Jacobi el-
lipsoids because oblate spheroids have rotational symmetry and
thus produce flat light curves.

The shapes of Jacobi ellipsoids in terms of the semiaxes
(a; b; c) can be obtained by solving (Chandrasekhar 1969)

a2b2
Z 1

0

1

a2 þ uð Þ b2 þ uð Þ!(a; b; c)
du

¼ c2
Z 1

0

1

c2 þ uð Þ!(a; b; c)
du; ð1Þ

where !(a; b; c) ¼ a2 þ uð Þ b2 þ uð Þ c2 þ uð Þ½ (1/2. The spin fre-
quency ! and density ! are related to the shape by

! 2

"G!
¼ 2abc

Z 1

0

u

a2 þ uð Þ b2 þ uð Þ du; ð2Þ

whereG is the gravitational constant. We solved equation (1) for
values of b/a between 0.43 and 1.00 in steps of 0.01 and used
the solutions, together with equation (2), to calculate !2/"G!,
which relates the spin period to the body density for each of the
equilibrium triaxial ellipsoids. Figures with b/a < 0:43 are un-
stable due to rotational fission (Jeans 1919).
The derived shapes are then ray-traced at regular intervals

spanning a full rotation period. This produces a set of frames
from which the light curve is extracted by integrating the total
light in each one of them. In this way we generate a database of
light curves of figures of equilibrium that can be used to com-
pare to the light-curve data. As described below we run our sim-
ulations for two surface-scattering laws.
The ray-tracing is done using the main engine of the open-

source software POV-Ray.2 The surface-scattering routines were
rewritten to permit accurate control of the scattering function. To
test the accuracy of our ray-tracing method we simulated the light
curve of a triaxial ellipsoidwith an axis ratio b/a, observed equator-
on (# ¼ 0)) at zero phase angle ($ ¼ 0)), using a ‘‘lunar’’ surface-
scattering function (see x 2.3), and compared the result with the
analytical solution for the same configuration, given by

m(b=a;%) ¼ 2:5 log10

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (b=a)2 " 1

" #
cos2(2"%)

q
; ð3Þ

where %2 ½0; 1( is the rotational phase of the ellipsoid. The result
is plotted in Figure 1. The ray-traced light curve deviates#0.1%
from the analytical solution, which is negligible when compared
to the uncertainties in the photometric data, typically#2Y3% on
real astronomical objects.

2.2. Roche Binaries

Light curves from an eclipsing binary asteroid consisting of
two spheres in circular orbit have been presented by Wijesinghe
& Tedesco (1979). As the binary separation becomes comparable
to the scale of either component, mutual gravitational forces will
deform the bodies, increasing the light-curve range over the maxi-
mum (factor of 2) possible for equal-sized spheres (Leone et al.

TABLE 1

(624) Hektor Light-Curve Data

JDa
#b

(deg)

$ c

(deg)

!mdata
d

(mag)

!mmodel
e

(mag)

2,435,989.................. 74.9 +4.4 0.775 0.737

2,438,795.................. 24.8 +4.1 0.113 0.063

2,439,556.................. 52.5 "5.3 0.398 0.302

2,439,977.................. 86.3 +4.1 1.055 1.048

Note.—Sources cited in x 3.1.
a Date of observation.
b Aspect angle.
c Phase angle.
d Data light-curve range.
e Best-fit model light-curve range.

TABLE 2

List of Objects to Fit

Object a Familyb
H c

(mag)

De
d

(km)

P e

( hr)

!mf

(mag)

!g

(kg m"3)

Triaxial Ellipsoids

2003 EL61 .............................. KBO 0.2 1450 3.9154 0:28 * 0:04 2585þ81
"44

Varuna .................................... KBO 3.2 900 6.3442 0:42 * 0:02 992þ86
"15

2000 GN171 ............................ KBO 6.0 360 8.329 0:61 * 0:03 1946þ1380
"344

Roche Binaries

2001 QG298 ............................ KBO 6.9 240 13.7744 1:14 * 0:04 590þ143
"47

2000 GN171 ............................ KBO 6.0 360 8.329 0:61 * 0:03 650þ75
"80

(624) Hektor........................... Trojan 7.5 180 6.9225 1.2h 2480þ80
"292

Note.—Sources cited in the text. KBO 2000 GN171 is intentionally listed twice, as its nature is uncertain.
a Object designation.
b Object family.
c Absolute magnitude.
d Approximate equivalent circular diameter.
e Rotation period.
f Peak-to-peak light-curve range.
g Estimated density.
h Maximum predicted amplitude at # ¼ 90).

2 Available at http://www.povray.org.
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1984). Tomodel thismutual deformation in close and contact-binary
systems we use the Roche binary approximation (Chandrasekhar
1963; Leone et al. 1984). In this approximation each component is
considered to be a Roche ellipsoid, which is the equilibrium shape
of a satellite orbiting a spherical, moremassive primary. The tidally
deformed shape of the secondary is assumed to be solely caused by
the spherically symmetric gravitational gradient due to the primary.
Each component’s shape is calculated separately using reciprocal
values, q and 1/q, for themass ratio. Clearly, such an approximation
introduces the most error when calculating shapes of close binaries
with mass ratios near q ¼ 1. In these situations the elongation of
the binary components is underestimated, which leads to smaller
light-curve ranges. With the further assumptions that the binary is
tidally locked and that the components have equal density, !, and
orbit the center mass in circular paths, themass ratio q, the shape of
one of the components (b/a; c/a), and the orbital frequency ! can
be calculated by solving (Chandrasekhar 1963)

(3þ 1=q)a2 þ c2

(1=q)b2 þ c2
¼ a2A1 " c2A3

b2A2 " c2A3
; ð4aÞ

q

1þ q

! 2

"G!
¼ 2abc

a2A1 " c2A3

(3þ 1=q)a2 þ c2
; ð4bÞ

with A1, A2, and A3 given by (Chandrasekhar & Lebovitz 1962)

A1¼
2

a3sin3%

1

sin2#
F(#;%)" E(#;%)½ (; ð5aÞ

A2 ¼
2

a3sin3%

1

sin2# cos2#

; E(#;%)" F(#;%) cos2#" c

b

$ %
sin2# sin %

& '
; ð5bÞ

A3 ¼
2

a3 sin3%

1

cos2#

b

c

$ %
sin %" E(#;%)

& '
; ð5cÞ

where E(#;%) and F(#;%) are the standard elliptic integrals of
the two kinds with arguments

# ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 " b2

a2 " c2

r
; % ¼ arccos

c

a

$ %
: ð6Þ

Each root of equation (4a), corresponding to a Roche ellipsoid
solution, can be calculated by setting three of the four parameters
q and (a; b; c), and solving for the fourth by interpolation. For the
primary, we set a ¼ 1 and calculate b for each combination of
q ¼ qmin; : : : ; 1:00 and c ¼ cmin; : : : ; 0:99, both in steps of
0.01. The procedure is repeated using 1/q instead of q to calculate
the shape of the secondary, (a0; b0; c0). A valid Roche binary so-
lution is obtained if two sets, (q; a; b; c) and (1/q; a0; b0; c0), yield
the same value !2("G!)"1 when replaced into the right-hand side
of equation (4b). Table 3 shows the solutions for q ¼ 0:25.

2.3. Surface Scattering

The surface-scattering properties of KBOs are unknown. For
this reason the amount of sunlight reflected from aKBO is usually
taken to be proportional to its geometrical cross-section.However,
the total range of the light curve of a convex object increases sig-
nificantly if there is limb darkening. The two simplest scattering
laws generally used to model planetary surfaces are the Lommel-
Seeliger and Lambert laws. The Lommel-Seeliger law is a single-
scattering model, suitable for low-albedo surfaces, and can be
considered a simplification of the well-known Hapke model (Li
2005). The Hapke model is inappropriate for this work because it

Fig. 1.—Accuracy of ray-traced vs. analytical solutions for an ellipsoid with a
lunar-type surface and an axis ratio b/a ¼ 2/3, observed at aspect angle # ¼ 90)

and phase angle $ ¼ 0). Bottom dots and right ordinate axis show difference
between the dots (ray-traced) and the line (analytical) shown at the top.

TABLE 3

Roche Binary Solutions for Mass Ratio q ¼ 0:25

B/Aa C/Aa b/ab c/ab !2/("G!)c l d

0.91674................................... 0.83000 0.51426 0.48000 0.10626 1.19222

0.92292................................... 0.84000 0.61175 0.57000 0.10137 1.28193

0.92891................................... 0.85000 0.66433 0.62000 0.09554 1.34473

0.93473................................... 0.86000 0.70532 0.66000 0.08945 1.40392

0.94037................................... 0.87000 0.73534 0.69000 0.08368 1.45810

0.94584................................... 0.88000 0.76469 0.72000 0.07755 1.51789

0.95114................................... 0.89000 0.79333 0.75000 0.07109 1.58466

0.95629................................... 0.90000 0.81200 0.77000 0.06558 1.64436

0.96128................................... 0.91000 0.83935 0.80000 0.05864 1.72902

0.96612................................... 0.92000 0.85713 0.82000 0.05282 1.80713

0.97081................................... 0.93000 0.88311 0.85000 0.04550 1.92216

0.97537................................... 0.94000 0.89996 0.87000 0.03943 2.03365

0.97979................................... 0.95000 0.91642 0.89000 0.03328 2.17018

0.98407................................... 0.96000 0.93250 0.91000 0.02706 2.34450

0.98824................................... 0.97000 0.95588 0.94000 0.01924 2.65422

a Primary axis ratios.
b Secondary axis ratios.
c Orbital frequency squared in units of "G!, where G is the gravitational constant.
d Orbital distance in units of Aþ a.
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hasmany parameters that cannot realistically be constrained using
light-curve data. To model relative brightness variations, which is
what is needed to generate light curves, the Lommel-Seeliger law
requires no parameters; it depends solely on the cosines of the in-
cidence and emission angles (i and e, the angles between the
surface normal and the directions to the light source and to the
observer). The Lommel-Seeliger reflectance function is thus

rLS /
&0

&þ &0

; ð7Þ

where &0 ¼ cos i and & ¼ cos e.
TheLambert scattering law is a simple description of a perfectly

diffuse surface. It assumes that a light ray that enters the material
is multiply scattered and thus leaves the surface in a random direc-
tion. As such, it is a multiple-scattering law that adequately de-
scribes high-albedo surfaces. The Lambert reflectance function is

rL / &0: ð8Þ

The Lommel-Seeliger and Lambert scattering functions are taken
here as representative of low-albedo ‘‘lunar-type’’ surfaces and
high-albedo ‘‘icy-type’’ surfaces, respectively.

Figures 2 and 3 compare the light curves of Roche contact bi-
naries using both lunar and icy scattering models at four different
phase angles. A uniform scattering law is also plotted for com-
parison. The uniform model assigns equal brightness to any il-
luminated point on the surface and thus represents the illuminated
cross-section. Figure 2 is for a contact binary with equal size com-
ponents, while Figure 3 represents the case of different sizes for

primary and secondary (see Fig. 4). A few conclusions can im-
mediately be drawn from inspection of Figures 2 and 3:

1. At low phase angle the lunar model produces negligible limb
darkening and is thus equivalent to the simpler uniform model.
Only at large phase angles (k30)) does the uniform approxi-
mation fail to follow the lunar scattering law. Icy surfaces, how-
ever, always produce larger light-curve ranges for the same shape,
which implies that assuming uniform scattering when interpreting
light curves of icy objects will tend to exaggerate the inferred
shape elongation.
2. The light curveminima become broader with increasing phase

angle. This fact implies that V-shaped minima are strictly diag-
nostic of a close-binary configuration only when viewed near
zero phase angle. Fortunately, this is necessarily the case for all
observations of KBOs.
3. Observations at different phase angles shift the minima and

maxima of the light curve in rotational phase. This effect should
be taken into account when fitting a single spin period to obser-
vations taken at different phase angles. For instance, failure to fit
all the data with a single period does not necessarily imply com-
plex (nonprincipal axis) rotation when observations over a wide
range of phase angles are compared.

In our simulations we use the lunar- and icy-type surface laws
separately to assess how different surface properties affect our re-
sults. As shown below, we find that different surface properties
do not significantly change our density estimates. It is also shown
that while in some cases the choice of a particular scattering law
clearly improves the light-curve fit, in other cases the result is de-
generate as far as surface properties are concerned. The simulations

Fig. 2.—Light curves of a Roche contact binary at different phase angles and for different scattering laws. In the uniform case every point of the surface that is
illuminated by sunlight reflects exactly the same amount of light back to the observer. Both primary and secondary have axis ratios b/a ¼ 0:67 and c/a ¼ 0:60, and the
components are in contact.

LACERDA & JEWITT1396 Vol. 133



further assume that the surface albedo is uniform and the same
for both components of the binary.

2.4. Observational Geometry

Owing to their large distances from the Sun and Earth, KBOs
can only be observed at small phase angles ($ < 2)). The object
(20000) Varuna is known to exhibit a pronounced opposition ef-
fect at phase angle $ < 0:1) (Hicks et al. 2005), which seems to
affect the extent of its brightness variation (Belskaya et al. 2006).
In the range 0:1) < $ < 2:0) the phase curve of (20000) Varuna
is linear (Sheppard & Jewitt 2002) and the light curve unaffected
by phase effects. We place our simulations well within this linear
regime by using a phase angle$ ¼ 1). In addition, sincemost of
the data beingmodeled have$ > 0:1) the opposition effect is likely
unimportant to the conclusions presented here.

The aspect angle is the angle between the line of sight and the
spin axis of the system.We simulated light curves for two values
of the aspect angle: 90) (equator-on) and 75). Given that the spin
axis orientations are unknown, the models with a tilted orien-
tation allow us to investigate how the aspect angle affects our
conclusions. In the case of (624) Hektor the spin (or orbital) axis
orientation is known (Dunlap & Gehrels 1969), and we were
able to perform simulations using the actual aspect and phase
angles at the moment the data were taken (see Table 1).

3. BEST-FIT SOLUTIONS

3.1. (624) Hektor

Jovian Trojan asteroid (624) Hektor has long been recognized
as a likely contact binary (Hartmann & Cruikshank 1978, 1980;

Fig. 4.—Three-dimensional rendering of the binary used to produce Fig. 3 ($ ¼ 60)). Rotational phase (% ¼ 0), 72), 144), 216), and 288)) runs from left to right, and
rows show (top to bottom) lunar, icy, and uniform surface-scattering functions.

Fig. 3.—Same as Fig. 2, but for a binary with different size components. Mass ratio is q ¼ 0:67, and the components have axis ratios (B/A ¼ 0:77, C/A ¼ 0:69) and
(b/a ¼ 0:53, c/a ¼ 0:49).
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Weidenschilling 1980). Numerous light-curve data spanning a
long time base (1957Y1968) have been collected for this object,
which allowed the determination of the pole orientation (Dunlap
& Gehrels 1969; de Angelis 1995). Depending on the orbital con-
figuration, the light-curve range of (624) Hektor varies between
0.1 and 1.2mag (see Table 1). As noted byWeidenschilling (1980;
see also Leone et al. 1984) light-curve ranges above 0.9 mag can-
not be produced by rotation of a single equilibrium figure and,
instead, are most likely produced by a tidally distorted contact bi-
nary. Besides the large range of variability, the light-curve mor-
phology of (624) Hektor exhibits V-shaped minima and round
maxima, also characteristic of tidally deformed, contact binary
systems.

Making use of the extensive data set presented in Dunlap &
Gehrels (1969) we have selected the Roche binary model (see

x 2.2) that simultaneously best fits the observations at four ob-
serving campaigns (see Table 1). The quality of fit is measured
by'2/'2

best , i.e., the ratio of the'
2 value of eachmodel to the'2

value of the best-fit model. This corresponds to a reduced '2

('2
red) if one assumes that the best-fit model has '2

red ¼ 1. We do
this because the errors associated with the data for (624) Hektor
are not known with certainty, which does not allow us to reliably
calculate the '2

red for each model. In Table 4 we show the three
Roche models that best approximate (624) Hektor’s light curve.
Figure 5 shows how well our simulations are able to determine
the density, orbital distance, mass ratio, and surface scattering prop-
erties of the (624) Hektor system. In the top left panel we plot
histograms of quality of fit for the two scattering laws consid-
ered. A lunar scattering law clearly produces better fits, which is
no surprise as (624) Hektor is known to have a low albedo

TABLE 4

Best Three Roche Binary Model Fits to (624) Hektor

STa qb B/Ac C/Ac b/ad c/ad !2/("G!)e d/(Aþ a)f !g '2/'a
best

h

Lunar ................................. 0.62 0.80 0.72 0.47 0.43 0.122 0.98 2480 1.00

Lunar ................................. 0.67 0.77 0.69 0.53 0.49 0.128 1.00 2374 1.06

Lunar ................................. 0.65 0.79 0.71 0.47 0.43 0.124 0.97 2453 1.08

a Surface type.
b Mass ratio of the binary components.
c Axis ratios of the primary.
d Axis ratios of the secondary.
e Orbital frequency of binary.
f Binary orbital separation.
g Bulk density of the bodies (in kg m"3).
h Ratio of '2 of model to '2 of best-fit model.

Fig. 5.—Quality offit as a function of scattering function (top left), mass ratio of binary components (top right), orbital distance (bottom left), and bulk density of binary
components (bottom right) for (624) Hektor. To avoid cluttering, only Roche models with mass ratio values, q, in multiples of 0.05 are plotted.
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(#0.06; Cruikshank 1977; Fernández et al. 2003). In the bottom
left panel the orbital distance of the Roche binary models is
plotted versus quality of fit. The orbital distance is given in units
of the sum of the semimajor axes of the primary, A, and of the
secondary, a. The minimum is centered around d/(Aþ a) ¼ 1,
which corresponds to the binary components being in contact.
Values d/(Aþ a) < 1 are unphysical but we have decided to keep
them for two reasons. First, they may result from the approxima-
tions of the Rochemodel (Leone et al. 1984). The orbital distance
is calculated using Kepler’s third law assuming point masses for
the binary components. Since these have elongated shapes, grav-
ity will be enhanced, meaning the Rochemodel may underestimate

the orbital distance. Second, the mechanism that brought the two
components together and formed the binary may have produced
some deformation (a ‘‘crush’’ zone) around the point of contact,
bringing the objects closer together than the situation of contact
between two perfectly hard ellipsoids. Considering models with
'2/'2

best < 2, which roughly corresponds to a 1 ( criterion, we
find that the two components of (624) Hektor are separated by
d/(Aþ a) ¼ 1:00þ0:11

"0:09, which is consistent with contact. Figure 5
(top right) shows that the model poorly constrains the mass ratio
of the binary. The mass ratio that corresponds to the best-fit
Roche binary is q ¼ 0:62, but the range of q values that fall
within 1 ( of the best fit is broad. As for the bulk density of (624)

Fig. 6.—Roche binary model light curve superimposed on data for (624) Hektor taken at four different aspects.

Fig. 7.—Rendering of best-fit Roche binary model for (624) Hektor for the four geometries listed in Table 1. Rotational phase (% ¼ 15), 60), 105), 165), 210), 255),
315), and 360)) runs from left to right, while aspect angle decreases from top to bottom.
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Hektor (Fig. 5, bottom right), perhaps the most interesting quan-
tity to come out of our simulations, we find ! ¼ 2480þ80

"292 kgm"3.
This value closely confirms an earlier estimate: ! # 2500 kg m"3

(Weidenschilling 1980).
Figure 6 shows how the best Roche binary model compares to

the Dunlap &Gehrels (1969) light-curve data. The differences in

light-curve range from one campaign to the next reflect the effect
of the observational geometry. Given the simplicity of the model,
the agreement is remarkable and lends strong support to the idea
that (624) Hektor is a contact binary. The model for Julian day
2,438,795 shows the largest departure from the data. This is to be
expected given the small aspect angle, # ¼ 24:8). The cross-section

TABLE 5

2001 QG298 Model Fit

STa #b qc B/Ad C/Ad b/ae c/ae !2/("G!)f d/(Aþ a)g !h '2/'2
best

i

Jacobi Ellipsoid

Lunar ......................................... 90 . . . 0.43 0.34 . . . . . . 0.283 . . . 271 2.21

Icy ............................................. 90 . . . 0.56 0.41 . . . . . . 0.327 . . . 234 2.50

Lunar ......................................... 75 . . . 0.43 0.34 . . . . . . 0.283 . . . 271 6.60

Icy ............................................. 75 . . . 0.50 0.38 . . . . . . 0.310 . . . 248 2.51

Roche Binary

Lunar ......................................... 90 0.84 0.72 0.65 0.45 0.41 0.130 0.90 590 1.00

Icy ............................................. 90 0.44 0.85 0.77 0.53 0.49 0.116 1.09 659 1.09

Lunar ......................................... 75 1.00 0.44 0.40 0.44 0.40 0.135 0.76 568 1.62

Icy ............................................. 75 0.73 0.74 0.67 0.54 0.49 0.130 0.98 589 1.16

a Surface type.
b Aspect angle.
c Mass ratio of the binary components.
d Axis ratios of the primary.
e Axis ratios of the secondary.
f Spin (or orbital) frequency of triaxial ellipsoid (or binary).
g Binary orbital separation.
h Bulk density of the bodies (in kg m"3).
i Ratio of '2 of model to '2 of best-fit model.

Fig. 8.—Quality of fit vs. bulk density (top left) and axis ratios (top right) of Jacobi ellipsoid models, and vs. bulk density (bottom left) and orbital distance (bottom
right) of Roche binary models for 2001 QG298 light-curve data. Jacobi ellipsoid models are plotted for all four combinations of surface properties and observational
geometry listed in Table 5, while Roche binary models are plotted for both lunar- and icy-type surfaces at an aspect angle # ¼ 90).

LACERDA & JEWITT1400 Vol. 133



of the binary varies little at such unfavorable geometry, and
brightness variations must be attributed to irregularities on the
surface of the Trojan, which are not accounted for in the model.
In Figure 7 we show the best-fit model rendered at the four aspect
angles and for eight values of rotational phase. Recent obser-
vations using the laser guide star adaptive optics system at the
Keck II telescope suggest that (624) Hektormay have a bilobated
shape (Marchis et al. 2006b) and lend further support to the re-
sults presented here.

3.2. 2001 QG298

KBO 2001 QG298 completes a full rotation every P ¼
13:77 hr, and its brightness varies by !m ¼ 1:14 * 0:04 mag
(Sheppard & Jewitt 2004). The large range of brightness vari-
ation and relatively slow rotation provide compelling evidence
that 2001 QG298 is a contact or very close binary (Sheppard &
Jewitt 2004).We attempted to fit both Jacobi ellipsoid and Roche
binary models to the light-curve data on 2001 QG298, using the
two surface-scattering laws and the two different observational
geometries described in xx 2.3 and 2.4. Table 5 and Figures 8 and
9 present a summary of the best-fit models for different com-
binations of scattering law and observational geometry.

Clearly, the Roche-binary simulations fit the data better. Fur-
thermore, the binary model favored by the data has a lunar-type
surface and an equator-on geometry (see Fig. 9). However, choos-
ing an icy-type surface does not result in a significantly poorer fit.
Indeed, Figure 9 (bottom left) suggests that an intermediate scat-
tering law is needed to fit the shallower minimum in the light-
curve data.Models tilted 15) toward the line of sight are unable to
fit the deeperV-shapedminimum in the data. Taking all the Roche
simulations into account we find that 2001 QG298 should have an
orbital separation d/(Aþ a) ¼ 0:90þ0:31

"0:14 (contact binary) and a

bulk density ! ¼ 590þ143
"47 kg m"3. The uncertainty intervals are

established in the same way as was done for (624) Hektor (see
x 3.1). Inspection of Table 5 and Figure 8 shows that the best icy-
type surface models have d # 1:09 and ! # 660 kg m"3. Given
that the chosen surface-scattering laws represent extreme cases (the
surface of 2001 QG298 probably combines single- and multiple-
scattering behavior), we must conclude that the density we find
does not depend strongly on the specific surface-scattering prop-
erties of the KBO. The same applies to the binary components
being in (or very close to) contact. The best-fit Roche binary is
rendered in Figure 10. Our results are in good agreement with an
independent but similar attempt to fit this object’s light curve with
a Roche binary model (Takahashi & Ip 2004).

Fig. 9.—Models that best fit the light curve of 2001 QG298 for each combination of scattering law and geometry. Solid and dotted lines indicate lunar and icy surface-
scattering models, respectively.

Fig. 10.—Rendering of best-fit Roche binary model for 2001 QG298. Rota-
tional phase (% ¼ 45), 90), 135), 165), 210), 240), 285), 315), and 360)) runs
from left to right and top to bottom.
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3.3. 2000 GN171

The rotational properties of KBO 2000 GN171 also make it a
good candidate contact binary (Sheppard& Jewitt 2004). Its spin
period and light-curve range areP ¼ 8:329 hr and!m ¼ 0:61 *
0:03 mag (Sheppard & Jewitt 2002). However, as can be seen in
Table 6 and Figures 11 and 12, the light-curve fitting results are

not definitive about the nature of this KBO. A Roche binary
solution is the one that best fits the data (see Table 6), but it is not
significantly better than a single Jacobi ellipsoid model. Inspec-
tion of the light-curve fits (Fig. 12) suggests that while the Jacobi
ellipsoid model follows better the overall shape of the light curve,
it is not able to reproduce the different minima present in the
data. A Roche binary solution produces different minima, but

TABLE 6

2000 GN171 Model Fit

STa #b qc B/Ad C/Ad b/ae c/ae !2/("G!)f d/(Aþ a)g !h '2/'2
best

i

Jacobi Ellipsoid

Lunar ....................................... 90 . . . 0.62 0.44 . . . . . . 0.342 . . . 613 1.05

Icy ........................................... 90 . . . 0.75 0.50 . . . . . . 0.362 . . . 579 1.19

Lunar ....................................... 75 . . . 0.55 0.41 . . . . . . 0.325 . . . 645 1.04

Icy ........................................... 75 . . . 0.71 0.48 . . . . . . 0.357 . . . 587 1.20

Roche Binary

Lunar ....................................... 90 0.25 0.92 0.83 0.51 0.48 0.106 1.19 1972 1.09

Icy ........................................... 90 0.25 0.94 0.87 0.74 0.69 0.084 1.46 2504 1.66

Lunar ....................................... 75 0.34 0.89 0.81 0.45 0.42 0.108 1.09 1946 1.00

Icy ........................................... 75 0.25 0.92 0.84 0.61 0.57 0.101 1.28 2067 1.05

a Surface type.
b Aspect angle.
c Mass ratio of the binary components.
d Axis ratios of the primary.
e Axis ratios of the secondary.
f Spin (or orbital) frequency of triaxial ellipsoid (or binary).
g Binary orbital separation.
h Bulk density of the bodies (in kg m"3).
i Ratio of '2 of model to '2 of best-fit model.

Fig. 11.—Same as Fig. 8 but for 2000 GN171 light-curve data. Jacobi ellipsoid models are plotted for all four combinations of surface properties and observational
geometry listed in Table 6, while Roche binary models are plotted for a lunar-type surface and aspect angle # ¼ 75).
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seems to require an aspect angle # < 90) and a low mass ratio
(q # 0:3) to be able to reproduce a light-curve range as low as
!m ¼ 0:61 mag. The predicted orbital separation is d/(Aþ a) ¼
1:09þ0:55

"0:10. Lunar-type surface models consistently produce better
fits than icy-type models, irrespective of the nature (Jacobi el-
lipsoid or Roche binary) and orientation of 2000 GN171. The in-
ferred density is model dependent, but for each of the two models
it does not dependmuch on scattering properties nor on geometry.
If 2000 GN171 is taken to be a binary, its density should be ! #
2000 kgm"3. If it is an elongated ellipsoid instead it should have a
bulk density ! # 650 kg m"3. The best Roche binary model for
2000 GN171 is rendered in Figure 13.

3.4. 2003 EL61

The light curve of 2003 EL61 indicates a rotation period of
P ¼ 3:9 hr and a light-curve total range of !m ¼ 0:28 * 0:04

(Rabinowitz et al. 2006). The extremely fast rotation of 2003
EL61 implies that it must have a high density. Using a hydrostatic
equilibrium criterion, Rabinowitz et al. (2006) estimated ! #
2600Y3340 kg m"3. A binary solution would require a consid-
erably higher (and unrealistic) density than a rotationally deformed
ellipsoid. Binarity is also unlikely given the small range of bright-
ness variation: for a binary to produce such a shallow light curve,
the pole axis must nearly coincide with the line of sight. Indeed,
we find that no Roche binary model is able to satisfactorily fit this
object’s light-curve data (see Table 7 and Figs. 14 and 15). In the
case of Jacobi ellipsoid models, all possible combinations of
surface properties or orientation fit the data equally well. This is
partly due to the large scatter present in the light-curve data. How-
ever, the predicted density (! ¼ 2585þ81

"44 kg m"3) depends little
on specific choices of surface and geometry and is consistent with
the ! ¼ 2600Y3340 kgm"3 estimate of Rabinowitz et al. (2006).
We find that the axis ratios of 2003 EL61 should fall in the ranges
b/a ¼ 0:76Y0:88 and c/a ¼ 0:50Y0:55. The icy scattering law
(with # ¼ 75); see Table 7) is preferable, as Rabinowitz et al.
(2006) found that 2001 EL61 has a high albedo (>0.6). The best
Jacobi ellipsoid representation of 2001 EL61 is shown in Figure 16.

3.5. (20000) Varuna

The rotational properties of this object (P ¼ 6:34 hr and!m ¼
0:42 * 0:02) were interpreted in the context of ellipsoidal figures
of equilibrium and a density of ! # 1000 kg m"3 was derived
(Jewitt & Sheppard 2002). Our simulations lend support to this
result by showing that (20000) Varuna’s light curve is well fit by
a Jacobi ellipsoid model. This is apparent from Table 8 and
Figures 17 and 18. Figure 16 depicts the Jacobi ellipsoid model
of Varuna. As in the case of 2003 EL61, the quality of fit is de-
generate as far as surface properties and orientation are con-
cerned. Thus, depending on particular choices of these properties,
Varuna’s axis ratios lie in the ranges b/a ¼ 0:63Y0:80 and

Fig. 12.—Same as Fig. 9 but for 2000 GN171.

Fig. 13.—Same as Fig. 10 but for 2000 GN171.
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TABLE 7

2003 EL61 Model Fit

STa #b qc B/Ad C/Ad b/ae c/ae ! 2/("G!)f d/(Aþ a)g !h '2/'2
best

i

Jacobi Ellipsoid

Lunar ..................................... 90 . . . 0.80 0.52 . . . . . . 0.367 . . . 2585 1.00

Icy ......................................... 90 . . . 0.88 0.55 . . . . . . 0.372 . . . 2551 1.01

Lunar ..................................... 75 . . . 0.76 0.50 . . . . . . 0.363 . . . 2611 1.02

Icy ......................................... 75 . . . 0.86 0.54 . . . . . . 0.371 . . . 2557 1.00

Roche Binary

Lunar ..................................... 90 0.25 0.98 0.94 0.90 0.87 0.039 2.03 24049 6.08

Icy ......................................... 90 0.25 0.99 0.97 0.96 0.94 0.019 2.65 49286 6.45

Lunar ..................................... 75 0.25 0.95 0.89 0.79 0.75 0.071 1.58 13339 2.56

Icy ......................................... 75 0.25 0.97 0.93 0.88 0.85 0.045 1.92 20841 2.46

a Surface type.
b Aspect angle.
c Mass ratio of the binary components.
d Axis ratios of the primary.
e Axis ratios of the secondary.
f Spin (or orbital) frequency of triaxial ellipsoid (or binary).
g Binary orbital separation.
h Bulk density of the bodies (in kg m"3).
i Ratio of '2 of model to '2 of best-fit model.

Fig. 14.—Same as Fig. 8 but for 2003 EL61 light-curve data. Jacobi ellipsoid models are plotted for all four combinations of surface properties and observational
geometry listed in Table 7, while Roche binary models are plotted for an icy-type surface at an aspect angle # ¼ 75).



c/a ¼ 0:45Y0:52. The bulk density determination is again much
more robust; we find ! ¼ 992þ86

"15 kg m"3.

4. DISCUSSION

The photometric light curve of 2003 EL61 exhibits asym-
metries that are not reproduced by the simple Jacobi ellipsoid
model.Given the large size of this object (Deq # 1450; see Table 2),
which safely puts it in the gravity regime, we do not expect such
irregularities in the light curve to be due to an irregular shape.
Instead, if the light-curve features are real, they could have the
same origin as Pluto’s brightness variation: albedo patches across
the object’s surface. Like Pluto, 2003 EL61 is large enough to hold

a thin atmosphere, whichmight condense on the surface and cause
the patches.

The high density derived for (624) Hektor stands in contrast to
the low value (! ¼ 800þ200

"100 kg m
"3) derived for resolved Trojan

binary (617) Patroclus (Marchis et al. 2006a). The sizes of these
two Trojans are similar; Hektor is 102 * 2 km in radius while
Patroclus is 70 * 2 km in radius, when measured and interpreted
in the same way (Fernández et al. 2003). The low density of
Patroclus requires substantial porosity and also suggests an ice-
rich composition. Hektor’s density is consistent with zero porosity
and a smaller or negligible ice fraction. This difference is puzzling,
given that the albedos (0:057 * 0:004 and 0:050 * 0:005, re-
spectively) are very similar, as are the optical reflectivity gradients
(11:6% * 1% per 1000 8 [Sawyer 1991] and 8:8% * 1% per
1000 8 [Jewitt & Luu 1990], respectively).

Marchis et al. (2006a) argued that the low density and inferred
porous, ice-rich composition of (617) Patroclus was an indica-
tion that it originated in the outer part of the solar system. The
high density of (624) Hektor is hard to explain in this context;
does it indicate that (624) Hektor did not form in the outer solar
system? Analogously, the similar size and surface properties of
these two Jovian Trojans could be used to infer a common origin.
A similar density argument was used for the Saturnian irregular
satellite Phoebe (#220 km in radius), but in the opposite direc-
tion. The high density of Phoebe (! ¼ 1630 * 33 kgm"3), when
compared with that of other (regular) moons of Saturn, has been
intepreted as indicative of an outer solar systemorigin on the basis
that it matches the density of Pluto (Johnson & Lunine 2005). As
the examples above show, it is difficult to establish a simple re-
lation between formation region and bulk density (theremay be no
such relation) and therefore the density of a body alone should not
be used to infer its origin.

Figure 19 shows the KBO densities from our simulations ver-
sus equivalent circular diameter; Pluto and Charon (Person et al.

Fig. 15.—Same as Fig. 9 but for 2003 EL61.

Fig. 16.—Side (top) and tip (bottom) views of the Jacobi ellipsoid models of
2003 EL61 (left) and (20000) Varuna (right).
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2006) are plotted for comparison. The sizes of 2001 QG298 and
2001 GN171 were calculated from their absolute magnitude as-
suming a 0.04 albedo, and the error bars extend the albedo to
0.10. The size of (20000) Varuna is from Jewitt et al. (2001) and
that of 2003 EL61 is calculated using its mass (Rabinowitz et al.
2006) and the density derived here (see also Table 2). A trend of

increasing density with size is clear. Such relation may be caused
by (1) a difference in composition (ice/rock ratio), with bigger
objects having larger rock fractions, or (2) a trend in porosity,
with larger objects being more compacted than their smaller
counterparts, likely due to larger internal pressure. Although the
latter effect is certainly present, it is unclear if it is the dominant

TABLE 8

(20000) Varuna Model Fit

STa #b qc B/Ad C/Ad b/ae c/ae ! 2/("G!)f d/(Aþ a)g !h '2/'2
best

i

Jacobi Ellipsoid

Lunar ....................................... 90 . . . 0.69 0.47 . . . . . . 0.354 . . . 1020 1.16

Icy ........................................... 90 . . . 0.80 0.52 . . . . . . 0.367 . . . 985 1.00

Lunar ....................................... 75 . . . 0.64 0.45 . . . . . . 0.346 . . . 1045 1.17

Icy ........................................... 75 . . . 0.77 0.51 . . . . . . 0.364 . . . 992 1.00

Roche Binary

Lunar ....................................... 90 0.25 0.92 0.84 0.61 0.57 0.101 1.28 3563 5.48

Icy ........................................... 90 0.25 0.95 0.88 0.76 0.72 0.078 1.52 4657 8.12

Lunar ....................................... 75 0.25 0.92 0.83 0.51 0.48 0.106 1.19 3399 2.95

Icy ........................................... 75 0.25 0.93 0.85 0.66 0.62 0.096 1.34 3780 3.53

a Surface type.
b Aspect angle.
c Mass ratio of the binary components.
d Axis ratios of the primary.
e Axis ratios of the secondary.
f Spin (or orbital) frequency of triaxial ellipsoid (or binary).
g Binary orbital separation.
h Bulk density of the bodies (in kg m"3).
i Ratio of '2 of model to '2 of best-fit model.

Fig. 17.—Same as Fig. 8 but for (20000) Varuna light-curve data. Jacobi ellipsoid models are plotted for all four combinations of surface properties and observational
geometry listed in Table 8, while Roche binary models are plotted for a lunar-type surface and an aspect angle # ¼ 75).
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cause for the trend. This size-density relation has been noted
before (Jewitt 2002) and seems to be present in different popula-
tions, e.g., KBOs and planetary satellites (Jewitt 2007).

5. THE FRACTION OF CONTACT BINARIES
IN THE KUIPER BELT

Our simulations can be used to determine the light curve range
of Roche binaries at arbitrary observing geometries and for two
different surface types. We make use of this feature to refine
an earlier estimate of the contact binary fraction in the Kuiper
Belt (KB; see Sheppard & Jewitt 2004). Leone et al. (1984) ar-
gued that light curves with ranges between 0.9 and 1.2 mag must

be produced by tidally deformed contact binaries (see also
Weidenschilling 1980). While the maximum range of 1.2 mag is
valid for lunar-type surfaces having negligible limb darkening,
our simulations show that Roche binaries with icy-type surfaces
(and thus significant limb darkening) can produce light-curve
ranges up to 1.57 mag. We searched our models for the binaries
that produce these maximal light-curve ranges (1.2 mag for lunar
surface and 1.57mag for icy surface) when observed equator-on,
i.e., at aspect angle # ¼ 90). The aspect angle is measured between
the line of sight and the pole axis of the binary. As the pole axis of
such a binary moves away from the equator-on configuration (as
the aspect angle approaches 0)) the light-curve range becomes
smaller and smaller; let us denote by #min the aspect angle at
which the light-curve range reaches 0.9 mag. If we assume that
the pole axes of KB contact binaries are randomly oriented in
space, then the detected contact-binary fraction is less than the
true fraction by a (geometrical correction) factor cos #min.

Using our simulations we find the geometrical correction
factor to be #cos (81:4)) ¼ 0:15 for lunar-type surfaces and
#cos (70:7)) ¼ 0:33 for binaries with an icy-type surface (see
Fig. 20).We use the fraction of 1/34 objectswith large (>0.9mag)
light-curve range measured by Sheppard & Jewitt (2004) as it
constitutes the largest homogeneous survey for variability. There-
fore, considering only lunar-type surfaces the true fraction of
contact binaries is f # 1/(34 ; 0:15) # 0:20. If we consider icy-
type surfaces then we estimate the fraction to be f # 1/(34 ;
0:33) # 0:09. Two argumentsmake the latter of the two estimates
a strong lower limit for the true fraction of contact (or close) KB
binaries. First, the two surface types used here are simplified
limiting models of how real planetary surfaces scatter light. Real
objects presumably exhibit a degree of limb darkening between
the two simulated here. Secondly, contact binaries with relatively
low mass ratios produce shallower light curves, which fall below
the 0.9 mag threshold adopted here and are not accounted for. Our

Fig. 18.—Same as Fig. 9 but for (20000) Varuna.

Fig. 19.—Log density vs. log equivalent circular diameter for the four KBOs
modeled. Jacobi ellipsoid fits are indicated by single ellipsoid symbols, and
Roche binary fits are indicated by double ellipsoid symbols. Pluto and Charon are
plotted for comparison. KBO 2000 GN171 is plotted twice (dotted line).

DENSITIES OF SOLAR SYSTEM OBJECTS 1407No. 4, 2007



estimate, new in that it includes the effect of surface scattering,
substantiates the idea that a considerable population of contact /
close binary objects in the KBmay await discovery (Sheppard &
Jewitt 2004).

The Pan-STARRS all-sky survey3 will scan the entire visible
sky, down to mR # 24, on a weekly basis (Kaiser et al. 2005).
Besides detecting all moving objects to that brightness limit, this
cadence will allow (sparsely sampled) time-series photometric
studies, and thus the detection of high-variability candidates,
suitable for follow-up observations. The surveywill therefore sig-
nificantly improve the estimate of the contact binary fraction. The
intrinsic fraction of KB contact binaries can provide important con-
straints on binary formation mechanisms (e.g., Goldreich et al.
2002) and collisional evolution in the KB region (Petit &Mousis
2004).

6. SUMMARY

Mathematically unique interpretations of rotational light-
curve data are generally impossible. Nevertheless, light curves
can, under physically plausible assumptions, convey invaluable
information about the spins, shapes, and densities of small solar
system bodies. In this workwe have explored the role of surface-
scattering properties on the derivation of bulk densities from
rotational light curves using a quantitative model of rotationally
deformed bodies. We find that:

1. With few exceptions, the choice of a particular scattering
function does not strongly affect the densities we obtain from our
simulations. Instead, the presence of surface irregularities (lumps)
and some albedo variegation (spots) on the objects sets the limit
to the precision of our density estimates; surface lumps and spots
make it impossible to find one idealized equilibrium shape that
matches the light curve, leading to some degeneracy in the fits.
2. Our density estimates suggest a trend of increasing density

with size. It is still unclear if such a relation is mainly due to com-
position, to a trend in porosity, or to a combination of both.

Confirming previous inferences, we find that:

3. The light curves of (20000) Varuna and 2003 EL61 are well
matched by rotational equilibrium models in which the bodies
are deformed by rotation into a triaxial shape. Jacobi ellipsoid
models with uniform surface albedo and a range of limb-darkening
functions have been used to derive the bulk densities (Varuna,
992þ86

"15 kg m"3; 2003 EL61, 2551
þ115
"10 kg m"3).

4. The light curves of Jovian Trojan (624) Hektor and KBO
2001QG298 are well described by contact-binarymodels in which
the densities are 2480þ292

"80 and 590þ143
"47 kg m"3, respectively.

5. The high incidence of KBO light curves consistent with a
contact binary interpretation suggests that these bodies are com-
mon in the Kuiper Belt.
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Fig. 20.—Light-curve range as function of aspect angle # for maximal !m
Roche binaries with both lunar- and icy-type surfaces. Top x-axis shows proba-
bility that the binary is observed at equal or larger #. See text for details.
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