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ABSTRACT

We used a sample of Kepler candidate planets with orbital periods less than 200 days and radii between 1.5 and
30 Earth radii (R⊕) to determine the typical dynamical spacing of neighboring planets. To derive the intrinsic
(i.e., free of observational bias) dynamical spacing of neighboring planets, we generated populations of planetary
systems following various dynamical spacing distributions, subjected them to synthetic observations by the Kepler
spacecraft, and compared the properties of observed planets in our simulations with actual Kepler detections. We
found that, on average, neighboring planets are spaced 21.7 mutual Hill radii apart with a standard deviation of
9.5. This dynamical spacing distribution is consistent with that of adjacent planets in the solar system. To test
the packed planetary systems hypothesis, the idea that all planetary systems are dynamically packed or filled to
capacity, we determined the fraction of systems that are dynamically packed by performing long-term (108 years)
numerical simulations. In each simulation, we integrated a system with planets spaced according to our best-
fit dynamical spacing distribution but containing an additional planet on an intermediate orbit. The fraction of
simulations exhibiting signs of instability provides an approximate lower bound on the fraction of systems that are
dynamically packed; we found that �31%, �35%, and �45% of two-planet, three-planet, and four-planet systems
are dynamically packed, respectively. Such sizeable fractions suggest that many planetary systems are indeed filled
to capacity. This feature of planetary systems is another profound constraint that formation and evolution models
must satisfy.
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1. INTRODUCTION

We examine the question of whether planetary systems gen-
erally consist of closely spaced planets in packed configurations
or whether planets in the same system are generally more widely
spaced apart. Here we adopt the traditional definition of dynam-
ical spacing as the separation between adjacent planets in terms
of their mutual Hill radius, and we define a planetary system to
be dynamically packed if the system is “filled to capacity,” i.e., it
cannot accept an additional planet without leading to instability.

The degree of packing in planetary systems has important
implications for their origin and evolution. It has been codified
in the packed planetary systems (PPS) hypothesis (e.g., Barnes
& Quinn 2004; Raymond & Barnes 2005; Raymond et al. 2006;
Barnes & Greenberg 2007), the idea that all planetary systems
are dynamically packed. Previous works have invoked the PPS
hypothesis to predict the existence of additional planets in sys-
tems with observed planets located far apart with an interme-
diate stability zone (e.g., Menou & Tabachnik 2003; Barnes &
Quinn 2004; Raymond & Barnes 2005; Ji et al. 2005; Rivera
& Haghighipour 2007; Raymond et al. 2008; Fang & Margot
2012b), since the PPS hypothesis requires that an undetected
planet is located in that stability zone. Systems that are observed
to have dense configurations could support the PPS hypothesis
if they were shown to be dynamically packed. Such systems
may include Kepler-11, with six transiting planets within 0.5
AU (Lissauer et al. 2011b), Kepler-36, whose two known plan-
ets have semi-major axes differing by only ∼10% (Carter et al.
2012), and KOI-500, which has five planets all within an orbital
period of 10 days (Ragozzine & Kepler Team 2012).

In this study, we seek to investigate the underlying distri-
bution of dynamical spacing in planetary systems by fitting to
the observed properties of Kepler planet candidates. By un-
derlying or intrinsic, we mean our best estimate of the true
distribution of dynamical spacing between neighboring planets
in multi-planet systems, i.e., free of observational biases. After
we derive the underlying distribution of the dynamical spac-
ing between planets, we create planetary systems whose planets
have separations that obey this distribution. We then subject
these planetary systems to N-body integrations to examine their
stability properties, which allows us to determine whether or
not they are dynamically packed. By determining the fraction
of systems that are packed, we can test the PPS hypothesis.

In a related study published by Fang & Margot (2012a),
we investigated the underlying multiplicity and inclination dis-
tribution of planetary systems based on the Kepler catalog
of planetary candidates from Batalha et al. (2012) in 2012
February. We created population models of planetary systems
following different multiplicity and inclination distributions,
simulated observations of these systems by Kepler, and com-
pared the properties of detected planets in our simulations with
the properties of actual Kepler planet detections. We used two
types of observables: numbers of transiting systems (i.e., num-
bers of singly transiting systems, doubly transiting systems,
triply transiting systems, etc.) and normalized transit dura-
tion ratios. Within our orbital period and planet radius regime
(P � 200 days, 1.5 R⊕ � R � 30 R⊕), we found that most
planetary systems had one to two planets with typical inclina-
tions less than 3◦. In the present study, we build upon and extend
this previous investigation to explore the underlying distribution
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of dynamical spacing in planetary systems using data from the
Kepler mission.

This paper is organized as follows. In Section 2.1, we define
our stellar and planetary parameter space. We also describe how
we created model populations of planetary systems and how we
compared them to the properties of Kepler planetary candidates.
In Section 2.2, we present the best-fit model representing our
best estimate of the intrinsic distribution of dynamical spacing
in planetary systems. In Section 3, we compare this distribu-
tion of dynamical spacing with that of the solar system. We
also make comparisons with two other systems, Kepler-11 and
Kepler-36, to quantify how rare such systems are. In Section 4,
we test and quantify whether such a distribution of dynamical
spacing implies that planetary systems are dynamically packed
by performing an ensemble of N-body integrations. We briefly
describe implications for the PPS hypothesis. Section 5 summa-
rizes the main conclusions of this study.

2. DYNAMICAL SPACING OF PLANETS

2.1. Methods

Our methods for deriving the intrinsic dynamical spacing of
planetary systems are as follows. First, we created model popu-
lations of planetary systems obeying different underlying distri-
butions of dynamical spacing. Second, we performed synthetic
observations of the planetary systems in these populations by the
Kepler spacecraft. At this stage we identified which simulated
planets were detectable by the Kepler telescope and which were
not. Third, we compared the resulting distribution of dynamical
spacing of detectable planets from synthetic populations with
that of the actual Kepler detections. The actual distribution can
be easily obtained from Kepler transit data with an assumed
planet radius–mass relationship. Most of these steps are fully
explained in Fang & Margot (2012a), and we refer the reader
to that paper for details. In the following paragraphs, we sum-
marize the most salient points of our procedure as well as any
differences with Fang & Margot (2012a).

Each model population consists of about 106 planetary sys-
tems, and we created various model populations that followed
different underlying distributions of multiplicity, inclinations,
and dynamical spacing. To generate these populations, we
needed to restrict the range of physical and orbital properties
of the stars and planets that we considered in our simulations.
We selected ranges that would adequately overlap those of a
Kepler sample that can be considered nearly complete (Howard
et al. 2012; Youdin 2011). Stellar properties such as radius R∗,
stellar noise σ∗, effective temperature Teff , surface gravity pa-
rameter log(g), and Kepler magnitude K were randomly drawn
from the Kepler Input Catalog (see Fang & Margot 2012a). We
only considered bright solar-like stars that obeyed the following
ranges:

4100 K � Teff � 6100 K,

4.0 � log(g [cms−2]) � 4.9,

K � 15 mag. (1)

Planet radii and orbital periods were drawn from debiased dis-
tributions, and we obtained these debiased distributions by con-
verting the observed sample of Kepler Objects of Interest (KOI,
based on detections up to Quarter 6 released in 2012 February;
Batalha et al. 2012) into a debiased sample using calculations of
detection efficiencies (see Fang & Margot 2012a). We filtered
the KOI sample (and correspondingly limited the parameter

space of the synthetic populations described in this paper) to the
following orbital period P, planet radius R, and signal-to-noise
ratio (S/N) boundaries:

P � 200 days,

1.5 R⊕ � R � 30 R⊕,

S/N(→ Q8) � 11.5. (2)

These limits were imposed in order to choose a sample of planets
with properties unlikely to be missed by the Kepler detection
pipeline. For S/N, we required an S/N � 10 for observations
up to Quarter 6, which corresponds to about S/N � 11.5 for
observations up to Quarter 8 by assuming that S/N roughly
scales as

√
N , where N is the number of observed transits.

This scaling is performed because the S/Ns of observed KOIs
have been reported for observations up to Quarter 8 in Batalha
et al. (2012), whereas the actual detections have been reported
up to Quarter 6 only. Planet masses M were calculated by
converting from planet radii R. We used a broken log-linear
M(R) prescription obtained by fitting to masses and radii of
transiting planets (see Fang & Margot 2012a):

log10
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M
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− 2.261
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= −0.492
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)
+ 0.777

for

(
R

RJup

)
� 1.062. (4)

Additionally, we repeated all of the methods described in
this section by using an alternate mass–radius relationship:
(M/M⊕) = (R/R⊕)2.06 (Lissauer et al. 2011b). By adopting
this alternate mass–radius equation, our results showed the same
best-fit dynamical spacing distribution as defined in Equation (7)
with σ = 14.5 (see results presented in Section 2.2). We note
that both of these mass–radius equations were obtained by
fitting to the sample of planets with known masses and radii.
Errors in the mass–radius relationships can potentially affect
our results because our determination of dynamical spacing
is a direct function of planetary masses. In Figure 1, we
investigate how uncertainties in the mass–radius relationship
map into dynamical spacing uncertainties. Specifically, we
plot histograms showing how the observed dynamical spacing
changes if there is a 1σ increase or decrease in mass for
the mass–radius equation. For masses lower than nominal,
adjacent planets appear to be less closely spaced and so the
distribution shifts to the right. For masses higher than nominal,
adjacent planets appear to be more closely spaced and so the
distribution shifts to the left. The shifts are quantified at the end
of Section 2.2.

For orbital eccentricities, we adopted circular orbits, as we
did in Fang & Margot (2012a). Eccentricities do not directly
affect our calculation of dynamical spacing, as we will define
below in Equation (5).

Regarding the multiplicity distribution in our model popula-
tions, we used a bounded uniform distribution with λ = 1.5–3.5
with increments of 0.25 to assign the number of planets per sys-
tem. A bounded uniform distribution has a single parameter λ
and is defined as follows: first, draw a value Nmax (maximum
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Figure 1. Top: observed transiting exoplanets with known masses and radii
shown in green, and the corresponding mass–radius relationship. Bottom:
dependence of the observed dynamical spacing distribution on the choice of
mass–radius relationship. In both panels, the nominal mass–radius relationship
as defined in Equations (3) and (4) is shown in black, and the mass–radius
relationship shifted by 1σ to lower (higher) masses is shown in brown (red). Δ
represents the number of mutual Hill radii between adjacent planets in multi-
planet systems and is defined in Equation (5).

(A color version of this figure is available in the online journal.)

number of planets) from a Poisson distribution with parameter λ
that ignores zero values, and second, draw the number of planets
from a discrete uniform distribution with range 1–Nmax (Fang &
Margot 2012a). Thus, each planetary system will have at least
one planet. For the inclination distribution of planetary orbits,
we used a Rayleigh distribution with σ = 1, 2◦ as well as a
Rayleigh of Rayleigh distribution with σσ = 1, 2◦. A Rayleigh
of Rayleigh distribution has a single parameter σσ and is defined
as follows: first, draw a value σ from a Rayleigh distribution with
parameter σσ , and second, draw a value for inclination from a
Rayleigh distribution with parameter σ (Lissauer et al. 2011b).
These specific multiplicity and inclination distributions were
chosen because they yielded fits consistent with transit numbers
and transit duration ratios from Kepler detections (see Fang &
Margot 2012a). Combinations of these specific multiplicity and
inclination distributions add up to a total of 36 possibilities.

The difference between model populations generated in Fang
& Margot (2012a) and the model populations generated in

this study is the treatment of planetary separations, since here
we wish to determine the underlying dynamical spacing of
planetary systems. We used a separation criterion Δ to assess the
dynamical spacing between all adjacent planets in multi-planet
systems, where Δ is defined as (e.g., Gladman 1993; Chambers
et al. 1996)

Δ = a2 − a1

RH1,2
, (5)

with

RH1,2 =
(

M1 + M2

3M∗

)1/3
a1 + a2

2
. (6)

In these equations, a is the semi-major axis, RH1,2 is the mutual
Hill radius, and M is the mass. Subscripts ∗, 1, and 2 refer to
the star, the inner planet, and the outer planet, respectively. For
a two-planet system not in resonance, the planets are required
to be spaced with Δ � 3.46 in order to be Hill stable.

In our model populations, adjacent planets in multi-planet
systems were spaced according to a prescribed Δ distribution.
We used a shifted Rayleigh distribution, which is the same as a
regular Rayleigh distribution except shifted to the right by 3.5
(since we require this distribution to provide values of Δ that
meet the minimum Hill stability limit). Such a distribution, as we
will show, matches the observed sample well. The mathematical
form of a shifted Rayleigh distribution f is

f (Δ) = Δ − 3.5

σ 2
e−(Δ−3.5)2/(2σ 2), (7)

and is described by a single parameter σ . In our model
populations, we explored values of σ = 10–20 with increments
of 0.5 for a total of 21 possibilities. We chose this range of
σ values based on the location of the observed Δ distribution
(blue histogram in Figure 2) with its approximate peak at about
20 mutual Hill radii. This chosen range of σ values allowed
us to explore different distributions of dynamical spacing that
spanned a reasonable range of possible model Δ distributions.
Increments of 0.5 were chosen as a trade-off between resolution
and computational limitations. As will be seen in Section 2.2, the
statistically good match between the data and the best-fit model
demonstrates that our increments are sufficiently small and have
appropriately sampled the possible range of Δ distributions.

In order to enforce that adjacent planets are spaced according
to the prescribed Δ distribution, we performed the following
steps. For each synthetic planetary system, the first planet’s
orbital period is drawn from the debiased period distribution.
If the system’s multiplicity is greater than one, for the second
planet we draw its separation Δ from the first planet using the
prescribed Δ distribution and we also draw a value from the
debiased period distribution. If that value is less/greater than
the first planet’s period, then the second planet will be the
inner/outer planet and its exact period will be calculated by
satisfying the drawn Δ separation from the first planet. This
process repeats if the system has additional planets. These steps
are different from Fang & Margot (2012a), where in that study
all planetary orbital periods were chosen by drawing them from
a debiased distribution. We verified that the periods drawn to
match the Δ distribution provide a very close match to the
debiased period distribution as well.

After the creation of each model population, we performed
synthetic observations of each population’s planetary systems
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Figure 2. The best-fit model’s underlying Δ distribution is shown as a magenta
curve. This distribution represents our best estimate of the true or intrinsic
(i.e., free of observational bias) distribution of dynamical spacing between
all neighboring planets meeting our orbital period and planet radius criteria.
Recall that Δ represents the difference in semi-major axes between two adjacent
orbits; it is expressed in units of the mutual Hill radius. The best-fit model is a
shifted Rayleigh distribution as defined in Equation (7) with σ = 14.5; the top
plot depicts the probability density and the bottom plot shows the cumulative
probability. The black curves show the range and sampling frequency of model
distributions that follow different σ parameter values ranging from σ = 10 to
σ = 20 with increments of 0.5, as examined in this study.

(A color version of this figure is available in the online journal.)

by the Kepler spacecraft in order to determine which planets
were transiting and detectable (see Fang & Margot 2012a). The
transiting requirement was evaluated by picking a random line
of sight (i.e., picking a random point on the celestial sphere) and
computing the planet–star distance projected on the plane of the
sky. The minimum of that distance was compared to the radius
of the host star to determine whether or not the planet in our
simulations transited. The detection requirement was assessed
by calculating each transiting planet’s S/N, defined as

S/N =
(

R

R∗

)2 √
N

σ∗
, (8)

where the first fraction gives the depth of the transit, N represents
the number of transits up to Quarter 6, and σ∗ represents stellar
noise (Combined Differential Photometric Precision or CDPP;
Christiansen et al. 2012). Since CDPP is quarter-to-quarter
dependent, we used the median CDPP value over all available
quarters. In the calculation of S/N, we took into account gaps
between Kepler quarters, the fact that not all stars are observed

each quarter, and a 95% duty cycle (Fang & Margot 2012a). If
the calculated S/N for a transiting planet met or exceeded the
S/N threshold for detection (S/N = 10), then it was considered
detectable.

Lastly, we determined the goodness-of-fit between each
model population’s detected planets and the actual Kepler de-
tections. This was ascertained by comparing the Δ distributions
of adjacent planets in their multi-planet systems. We performed
a Kolmogorov–Smirnov (K-S) test to assess the fit between the
Δ distributions, and this comparison yielded a p-value that we
used to evaluate the null hypothesis that the distributions em-
anate from the same parent distribution. This K-S probability
was used to determine how well a particular model matched the
observations. We also calculated the goodness-of-fit for multi-
plicity (by comparing with observed Kepler numbers of transit-
ing systems using a χ2 test) and for inclination (by comparing
with observed, normalized transit duration ratios using a K-S
test) to check that they were consistent with the data (see Fang
& Margot 2012a). While we only generated model populations
with underlying multiplicity and inclination distributions that
are considered to be good fits to the data based on our previ-
ous work, this extra step allowed us to confirm that any models
with acceptable Δ fits also produced acceptable multiplicity and
inclination fits to the Kepler data. We determined which model
populations were most consistent with the data by combining
(multiplying) the probabilities associated with each one of the
three statistical tests that probed multiplicity, inclination, and
dynamical spacing. We assumed that these probabilities are in-
dependent.

Accounting for all combinations of multiplicity, inclination,
and dynamical spacing distributions, in total we created 756
model populations with about 106 planets each. As described
earlier, each of these model populations underwent synthetic
observations by Kepler as well as statistical tests. The next
section presents our results.

2.2. Results

We report our results on the dynamical spacing (represented
by the criterion Δ) in multi-planet systems based on Kepler
data. Using the methods described in the previous section, we
determine that our best-fit model for the intrinsic Δ distribution is
a shifted Rayleigh distribution (see Equation (7)) with σ = 14.5.

This best-fit distribution is plotted in Figure 2, where we
show its probability density distribution (top panel) as well as
its cumulative probability distribution (bottom panel). This best-
fit distribution has a mean value of Δ = 21.7 with a standard
deviation of 9.5. About 50% of neighboring planet pairs have Δ
separations larger than 20, and about 90% of neighboring planet
pairs have Δ separations larger than 10. This best-fit distribution
was obtained by considering shifted Rayleigh distributions with
increments in σ of 0.5. The mean values for distributions with
σ = 14.0 and σ = 15.0 are Δ = 22.3 and Δ = 21.0,
respectively. The combined probabilities for the match to the
data using distributions with σ = 14.0 and σ = 15.0 are less
than half the combined probability using σ = 14.5.

Our results are valid for the range of stellar and planetary
parameters given in Equations (1) and (2), most notably a
minimum planet radius of 1.5 R⊕ and a maximum orbital period
of 200 days. It is possible that planets are actually even more
closely spaced than this best-fit distribution if there are planets
located in intermediate locations with radii less than 1.5 R⊕.
Therefore, our findings about the Δ distribution can be used to
represent the spacing of planetary systems confined to the scope
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Figure 3. The top plot shows the comparison between the observed Δ distribution
from actual Kepler detections (shown in blue) and the Δ distribution from
simulated detections in our best-fit model population (shown in orange); the
K-S probability for this match is 56%. The bottom plot shows this comparison
in cumulative form and its histogram points are connected by lines for easy
viewing, and also shows the comparison with the properties of detected planets
from other model populations (σ = 10 to σ = 20 with increments of 0.5;
shown in black). The 99.5% confidence region of acceptable fits includes model
populations with σ ranging from 12.5 to 17.0.

(A color version of this figure is available in the online journal.)

of our study, or can serve as an upper limit for the spacing of
planetary systems that include planets with smaller radii.

Figure 3 shows the comparison between the Δ distribution of
simulated detections from this best-fit model’s population and
the observed Δ from actual Kepler detections. Note that this fig-
ure does not show the underlying Δ distribution that is plotted
in Figure 2; instead, this figure shows the distribution of simu-
lated planets that would have been detected, in order to make an
appropriate comparison with the observed Δ distribution. The
K-S test for comparing these two distributions yields a p-value
of 56%, indicating that we cannot reject the null hypothesis that
these distributions are drawn from the same parent distribution.
In other words, this model is consistent with the observations.

Comparison between Figures 2 and 3 shows that the underly-
ing Δ distribution is similar to the observed Δ distribution—both
distributions have peaks near Δ ∼ 20. This suggests that the ob-
served Δ distribution is not indicative of a significant population
of non-transiting and/or low-S/N planets (within the planet ra-
dius and orbital period limits of our study) located inbetween
detected planets; otherwise, the underlying Δ distribution would
have on average lower Δ values than those of the observed dis-

Figure 4. Comparison of the cumulative Δ distribution between the best-fit
model’s Δ distribution (i.e., shifted Rayleigh distribution with σ = 14.5; purple
solid line) and the solar system’s Δ distribution (i.e., histogram based on its
eight planets; dotted green line).

(A color version of this figure is available in the online journal.)

tribution. We caution again that our study cannot rule out the
existence of a population of planets with R < 1.5 R⊕, so the
actual underlying Δ distribution could be different from what
our results indicate. The similarity between the observed and
underlying Δ distributions is due to the rarity of cases where a
system has Δobserved > Δunderlying (i.e., an undetected planet lo-
cated in-between two detected planets). The stringent geometric
probability of transit means that outer planets are more easily
missed than inner planets. As a result, it will be rare to find
cases where an intermediate planet is non-transiting and there-
fore missed, but both the innermost and outermost planets are
transiting and detected. For such a case, which rarely occurs,
the observed Δ would be greater than the underlying Δ.

We discuss how we expect these results to change if an al-
ternate mass–radius relationship is used. In particular, Figure 1
shows how the observed dynamical spacing distribution changes
depending on various choices for the mass–radius relationship.
For computational expediency, we chose to evaluate the effects
of the mass–radius relationship on the observed Δ distribution.
We use this as an approximation for the effects on the under-
lying Δ distribution, with the justification that the observed and
underlying Δ distributions appear similar (see previous para-
graph). For the mass–radius relationship shifted down by 1σ ,
the best-fitting shifted Rayleigh distribution has σ = 16.5. For
the mass–radius relationship shifted up by 1σ , the best-fitting
shifted Rayleigh distribution has σ = 12.5. As a result, we es-
timate that our derived dynamical spacing distribution can span
σ = 12.5–16.5 due to uncertainties in the mass–radius scaling.

3. COMPARISON TO THE SOLAR SYSTEM,
KEPLER-11, AND KEPLER-36

We can compare our results (i.e., the intrinsic dynamical spac-
ing or Δ distribution) with the dynamical spacing distribution of
the solar system if we extrapolate beyond the radius and period
limits (Equation (2)) of our study. Figure 4 shows our intrinsic Δ
distribution of planetary systems overplotted with a histogram
of the Δ distribution of the solar system planets. From this figure,
it is interesting to note that the distributions appear to be rela-
tively similar and that the solar system planets may be similarly
spaced as most exoplanets in general. A K-S test between our
cumulative Δ distribution and the sample of Δ values between
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adjacent planets in the solar system yields a p-value of 66.2%,
indicating that the solar system Δ distribution is consistent with
that of Figure 2.

The orbital evolution of the planets in the solar system is
known to be chaotic and unstable (e.g., Sussman & Wisdom
1988; Laskar 1989, 1990; Sussman & Wisdom 1992; Laskar
1994; Michtchenko & Ferraz-Mello 2001; Lecar et al. 2001).
The inner solar system can be potentially unstable within the
Sun’s remaining lifetime due to a secular resonance (Batygin
& Laughlin 2008). Laskar (1994) and Laskar & Gastineau
(2009) have shown that inner planets could be ejected or collide.
Numerical simulations of the planets in the outer solar system
suggest that they are packed (Barnes & Quinn 2004; Raymond
& Barnes 2005; Barnes et al. 2008). All of these results suggest
that the solar system is dynamically packed. If we consider the
solar system to be dynamically packed then it is possible that
other planetary systems with similar planet multiplicities and
Δ distributions are also dynamically packed. This prompted us
to verify whether planetary systems in general are dynamically
packed (see Section 4).

Kepler-11 is a planetary system with six known transiting
planets in a closely spaced configuration (Lissauer et al. 2011a).
All six transiting planets have orbits smaller than the orbit of
Venus, and five of the six transiting planets have orbits smaller
than the orbit of Mercury. This appears to be a very compact
system, and we calculate the Δ separations of the innermost five
planets to be Δb−c = 5.7, Δc−d = 14.6, Δd−e = 8.0, and Δe−f =
11.2. We did not calculate the Δ separation of the f–g planet pair
because the mass of planet g is not known and only has an upper
limit. Accounting for the 1σ uncertainties on mass reported by
Lissauer et al. (2011a), the dynamical spacing of these pairs have
the following ranges: Δb−c = 5.1–7.0, Δc−d = 13.0–17.3, Δd−e =
7.2–8.8, and Δe−f = 10.0–12.6. All of the Kepler-11 planets are
within the planet radius and orbital period scope of our study,
and we apply our knowledge of the intrinsic dynamical spacing
(i.e., Figure 2) to this system. We find that the separation Δb−c =
5.7 is more closely spaced than 98.9% of adjacent planet pairs
in multi-planet systems, Δc−d = 14.6 is more closely spaced
than 74.6%, Δd−e = 8.0 is more closely spaced than 95.3%,
and Δe−f = 11.2 is more closely spaced than 86.8%. These
high percentages indicate that the planetary separations in the
Kepler-11 system are much smaller than average separations in
planetary systems, and we conclude that Kepler-11 is unusual
in terms of the density of its configuration.

Kepler-36 has two known transiting planets with a large
density contrast (their densities differ by a factor of ∼8) yet they
orbit closely to one another (semi-major axes differ by ∼10%;
Carter et al. 2012). Such close orbits with dissimilar densities
are unusual compared to the planets in the solar system, where
the denser terrestrial planets are located in the inner region
and the less-dense giant planets are located in the outer region.
We calculate the dynamical spacing between the two planets
in Kepler-36 to be Δ = 4.7. In comparison to our intrinsic Δ
distribution of dynamical spacing, a separation of Δ = 4.7 is
more closely spaced than 99.7% of neighboring planet pairs of
planetary systems in general.

4. DYNAMICAL PACKEDNESS OF PLANETS

Section 2.2 described the best-fit Δ distribution of planetary
systems based on Kepler data, with a mean value of Δ = 21.7
(Figure 2). In this section, we investigate whether or not this
distribution of Δ implies that planetary systems are dynamically

packed. By dynamically packed, we refer to a planetary system
that is filled to capacity and cannot include an additional planet
without leading to instability.

To investigate whether planetary systems are dynamically
packed, we performed long-term N-body integrations of plan-
etary systems generated for our best-fit model population (see
Sections 2.1 and 2.2). For each multiplicity (i.e., two-planet sys-
tems, three-planet systems, four-planet systems), we randomly
chose 1000 planetary systems for which we performed long-
term integrations. In total, we performed 3000 integrations. We
did not include single planet systems because they are irrelevant
for studies of dynamical packedness and we did not include
systems with multiplicities higher than four planets because
they are relatively rare for our parameter space (Fang & Margot
2012a).

For each integration, we added an additional planet when
testing for stability; this planet had a mass equal to the lowest
mass of all original planets and its initial conditions included an
orbital eccentricity of zero, an inclination drawn from a Rayleigh
of Rayleigh distribution with σσ = 1◦ (see Section 2.1), and
random values for its argument of pericenter, longitude of the
ascending node, and mean anomaly. This additional planet was
placed inbetween the orbits of existing planets, and if there were
three or four original planets, we randomly determined which
two adjacent planets would be receiving a new neighbor. The
additional planet’s semi-major axis was calculated so that it
was located with equal mutual Hill radii distances between its
neighboring planets. These initial conditions for the additional
planet (e.g., low eccentricities, low inclinations, a mass equal
to the lowest mass of original planets, a semi-major axis
located at equal Δ distances from neighboring planets) are very
conservative in the sense that we have chosen initial conditions
that are very amenable to stability, as we determine whether or
not a planetary system with this additional planet can remain
stable.

Our simulations were performed using a hybrid symplectic/
Bulirsch–Stoer integrator from the Mercury package (Chambers
1999), and we used a time step that covered 1/25 of the
innermost planet’s orbital period. Simulations were performed
for a length of 108 years; the instability timescales had median
values less than 105 years. Possible outcomes included either a
stable system with no instabilities or a system with at least one
instability defined as a collision between the star and a planet, a
collision between planets, and/or an ejected planet. All of these
planetary systems were verified to be stable for 108 years before
adding the additional planet.

The results of our simulations can be divided into two camps.
The first group is composed of planetary systems that became
unstable in our integrations. This suggests that these planetary
systems are dynamically packed, since the addition of another
planet in an intermediate orbit resulted in an unstable planetary
system. We found that 31%, 35%, and 45% of two-, three-, and
four-planet systems were unstable, respectively (Table 1). The
second group is composed of planetary systems that did not
exhibit any signs of instability. For these systems, although
they were stable within the scope of our integrations, they
may still be dynamically packed. Possible reasons include an
instability may occur on a longer timescale than our integration
time, there may be additional planets in the system beyond the
scope of our orbital period range of 200 days, or there may be
additional planets in the system smaller than 1.5 R⊕, which is
the minimum radius of our study. All of these factors would
affect the determination of the stability of the system, and so
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Table 1
Lower Limits on the Percentage of Dynamically Packed Systems

System Multiplicity Percentage of Packed Systems

Two-planet systems �31%
Three-planet systems �35%
Four-planet systems �45%

Notes. Lower limits on the percentage of dynamically packed sys-
tems as obtained from the fraction of numerical integrations exhibit-
ing instabilities. A planetary system is considered to be dynamically
packed if the addition of another planet causes instability. The results
of our simulations only provide lower limits because the absence of
instability does not indicate that a system is not dynamically packed
(see main text).

for this second group of systems we are agnostic about their
dynamical packedness.

Accordingly, we can only confidently provide a lower limit
on packed systems by concluding that at least 31%–45% (de-
pending on the system’s multiplicity) of planetary systems with
dynamical spacings consistent with our best-fit Δ distribution
(Figure 2) are dynamically packed. These lower limits are also
presented in Table 1. Note that systems with lower multiplicity
are more common (Fang & Margot 2012a).

The PPS hypothesis is the idea that all planetary systems
are dynamically packed, and therefore cannot hold additional
planets without becoming unstable. The results of our long-term
numerical integrations are consistent with the PPS hypothesis,
as we find a sizeable lower limit of 31%–45% (depending on the
system’s multiplicity) of planetary systems to be dynamically
packed.

5. CONCLUSIONS

We have generated model populations of planetary systems
and simulated observations of them by the Kepler spacecraft. By
comparing the properties of detected planets in our simulations
with the actual Kepler planet detections, we have determined the
best-fit distribution of dynamical spacing between neighboring
planets. This best-fit distribution is our best estimate of the
underlying (i.e., free of observational bias) distribution of
dynamical spacing for our orbital period (P � 200 days)
and planet radius (1.5 R⊕ � R � 30 R⊕) parameter regime.
Stemming from this distribution, the main results of this study
are as follows.

1. On average, neighboring planets are spaced 21.7 mutual
Hill radii apart, with a standard deviation of 9.5. This dis-
tance represents the typical dynamical spacing of neighbor-
ing planets for all systems included in the parameter space
described above.

2. Our best-fit distribution of dynamical spacing is consis-
tent with the dynamical spacing of neighboring planets in
the solar system, with a K-S p-value of 66.2%. If we con-
sider the solar system to be dynamically packed, then it

is not unreasonable to ask whether other planetary sys-
tems with similar dynamical spacing are also dynamically
packed.

3. Based on our best-fit distribution of planetary spacing:
�31% of two-planet systems, �35% of three-planet sys-
tems, and �45% of four-planet systems are dynamically
packed. This means that such systems are filled to capac-
ity and cannot hold another planet in an intermediate orbit
without becoming unstable.

4. Our results on the dynamical packedness of planetary
systems are consistent with the PPS hypothesis that all
planetary systems are filled to capacity, as we find sizeable
lower limits on the fraction of systems that are dynamically
packed.

5. Compact systems such as Kepler-11 and Kepler-36 repre-
sent extremes in the dynamical spacing distribution. For ex-
ample, the two known planets in Kepler-36 are more closely
spaced than 99.7% of all neighboring planets represented
by our orbital period and planet radius regime.
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