The incompressibility of osmium metal at ultrahigh pressures and temperatures

Matt M. Armentrout and Abby Kavner, Earth & Space Science Department, University of California, Los Angeles 90095

(Work performed at the ALS, HP-CAT, GSECARS, and also using the COMPRES gasloading system at GSECARS)

Osmium is a third row transition metal in the iron group with a hexagonal closepacked structure, and is characterized by its high density, extremely low compressibility and high hardness. For these reasons it has been used to synthesize a number of ultra-hard materials of composed of a high valence transition metal covalently bonded to a lighter element. The behavior of ultra-hard materials is of significant interest for high temperature applications. We measured the thermal equation of state of osmium in the laser heated diamond anvil cell at pressures up to 50 GPa and temperatures up to 3000 K.

Figure 1. Measurements of osmium's unit cell volume as a function of pressure and temperature. High temperature measurements include those taken at COMPRES supported beamlines: 12.2.2 at the Advanced Light Source (circles), at HPCAT at the Advanced Photon Source (squares), and multianvil measurements by Voronin *et al* (2005). Isotherms at 300, 500, 1000, 1500, 2000, and 2500 K are plotted as a guide to the eye.

Table 1. Fitted equation of stateparameters for osmium metal. Data wasfit to the isothermal third order Birch-Murnaghan equation with a Mie-Grüneisen-Debye thermal pressurecorrection.

The equation of state of osmium is notable both for its very high bulk modulus and for its very high q value. The later correlates to very small thermal expansions at elevated temperatures.

References

M. M. Armentrout* and A. Kavner, Incompressibility of osmium metal at high pressures and temperatures, *J. Appl. Phys.* Vol. 107 (9) 093528 (2010).
G. A. Voronin, C. Pantea, T. W. Zerda, L. Wang, and Y. Zhao, J. Phys. Chem. Sol. 66, 706 (2005).