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Are aftershocks triggered by

Static stresses?




Far field aftershocks
(>>100 km)
Dynamic Triggering

3740 |

apag |0 0 T
g

37" 20

I I B Sl
-119° oo -118° 60 -118" 40

\\\\\\ ty 1970-2003

Long Valley

Near field aftershocks
(<0.5 — 1 fault length)
Too complicated to tell

; Ay
Ty B or ‘.‘T};_’l‘l z

,,'7 4 y | AN j 4 -
—— [T T R—

¥

1906 Fault Trace



Intermediate field aftershocks ??

Focus of this talk



Differences between static and
dynamic triggering

Static Dynamic
triggering triggering
Stress Shadow EXists Doesn’t Exist
Decay of 1 1
aftershocks Distances Distance
with distance




Stress Shadow Test

o A stress shadow Is a regional decrease In

the seismicity rate following a neighboring
earthquake

Static triggering = stress shadow
Dynamic triggering = no shadow



Common Test: Look for time averaged rate decreases in declustered catalog
(Reasenberg and Simpson, 1992; Wyss and Wiemer, 2000)
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Declustered catalog of M> 1.5 earthquakes; 49% of earthquakes removed

Plotted rate changes are significant at the 95% confidence level,
assuming that the declustered catalogs are Poissonian

Problem: Significant rate decreases are common

Bl rate decrease
Bl rate increase




Our Original idea: Is there a correlation between the amplitude of

predicted and observed rate decreases?

Correlation is clearly observed for rate increases

Data from the Landers earthquake
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Rate Change predictions from Coulomb static stress change (calc. by Stein et. al.)
and rate and state friction equations (Dieterich, 1994)
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Our Original idea: Is there a correlation between the amplitude of
predicted and observed rate decreases?

No correlation is observed for rate decreases

Data from the Landers earthquake
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Rate Change predictions from Coulomb static stress change (calc. by Stein et. al.)
and rate and state friction equations (Dieterich, 1994)



Our Original idea: Is there a correlation between the amplitude of
predicted and observed rate decreases?

But the positive correlations are not significant over the limited
range in which rate decreases can be measured

Observed rate change

Data from the Landers earthquake
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Rate Change predictions from Coulomb static stress change (calc. by Stein et. al.)
and rate and state friction equations (Dieterich, 1994)

Problem: Rate/Stress change calc errors obscure signal over this range



Alternative Method: Look for sudden rate drop at time of mainshock
Issue: How to identify expected stress shadow area

Method 1: Use stress change calculations
Earthquakes experiencing 0.1 to 5 bars stress change
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Problem: Modeled shadows always contain aftershocks



Method 2. See if a subregion of the modeled shadow has a rate decrease
(Parsons et al. 1999; Stein 1999; Wyss & Wiemer, 2000; Toda and Stein, 2003)
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Problem: Localized sudden rate decreases are common



Method 3: Use new earthquake time ratio test to empirically find entire
region where there are no aftershocks

1) Divide region into spatial bins

2) Calculate R for each bin

time from mainshock to
/ first earthquake after
Atz mainshock

/AT

time from last earthquake
before mainshock to first
earthquake after mainshock

3) When aftershocks are present: Most R << 1



Example: Using the time ratio R to identify regions with
aftershocks of the 1990 M 5.4 Claremont Earthquake
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Continuation of time ratio example

Issue: Some bins with late aftershocks do not have small time ratios

Solution: Since aftershocks cluster, a bin is classified as containing
aftershocks if a significant percentage of bins within 4 km have a
small time ratio R.
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Test of the Time Ratio Method
The ratio can identify a simulated Landers stress shadow
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Using the time ratio to look for predicted stress shadow regions

catalog data
Loma Prieta
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Results 1: No sign of a stress shadow after the 1989 M 7.1 Loma
Prieta earthquake
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Results 2: No sign of a stress shadow after the 1994 M 6.7
Northridge earthquake
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Results 3: No sign of a stress shadow after the 1983 M 6.4
Coalinga earthquake
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Results 4: Small decrease in slope after the 1992 M 7.3 Landers

earthquake?
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Dealing with Landers: Downturn for 1992 Landers earthquake is spatially
isolated, inconsistent with stress shadow model
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Aftershock Triggering
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Aftershock Decay with Distance Test

M 2 - 3 mainshocks

Aftershock density

10° 10"
Distance from mainshocks



If aftershock density varies linearly with stress change amplitude:

We expect a relationship of the form:

p=r

0 = Aftershock density
I = Distance from mainshock

For Static stress: M =3
For Dynamic stress: m =1



Choosing a data set to solve for m

-We use the relocated Shearer et al. (2003) Southern California catalog
-We use small mainshocks because they can be considered point sources
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Measuring aftershock distance (r) and density (p)

1) Place aftershocks in groups | * mainshocks
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Correcting for fractal fault structure
We solve for aftershock density as: P = N/(r2ﬁ'"; - T ﬁ*’)

Choosing y=3 (assuming faults are uniformly distributed in a volume) produces a
sharp decay even in earthquakes occuring before the mainshock

Earthquakes occurring 4-5 days before M 3-4 mainshocks.

m= 2.27 £0.06

m= 0.02 +£0.05
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Using v = 0.73 accounts for fault clustering, giving m=0 for
pre-mainshock earthquakes



Distance vs. Density for first 30 minutes of aftershocks, So Cal
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Distant aftershocks are real

Time series of stacked aftershocks of M 3-4 mainshocks shows
that aftershocks occur out to 16 km (14 fault lengths)
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Distance vs. density for first 30 minutes of aftershocks, other regions
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Conclusions
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