

Erratum

Contents lists available at ScienceDirect

Chemical Geology

journal homepage: www.elsevier.com/locate/chemgeo

Erratum to "Fluorapatite solubility in H_2O and H_2O -NaCl at 700 to 900 °C and 0.7 to 2.0 GPa" [Chemical Geology 251/1-4 (2008) 112–119]

A. Antignano¹, C.E. Manning*

University of California Los Angeles, Los Angeles, CA, 90095-1567, USA

The equation appearing in the abstract and as Eq. (1) contains an error. The correct equation is:

 $\log c_{ap}^{\circ} = -0.356 + 0.00241T + 9.17 \log \rho_{\rm H_{2}O}$

where c_{ap}° is the concentration of dissolved fluorapatite in parts per million, $\rho_{\rm H_{2}O}$ is the density of H₂O in g/cm³, and *T* is temperature in Kelvin.

In addition, the last sentence in the first paragraph of Section 4.2, "Comparison to other minerals", should read "The low solubility of fluorapatite in pure H_2O demonstrates that it is the most refractory of

the Ca salts commonly found in high-grade metamorphic rocks, if pore fluids are very dilute aqueous solutions." Lastly, in Section 4.4, "Implications for REE mobility", the sentence on fluorapatite dissolution in pure H_2O , the mass of monazite that would contain all LREE derived from fluorapatite should be 0.6 µg, not 0.6 mg.

Acknowledgements

We thank David Dolejs for pointing out the error in Eq. (1).

DOI of original article: 10.1016/j.chemgeo.2008.03.001.

^{*} Corresponding author. Tel.: +1 310 206 3290; fax: +1 310 206 8995.

E-mail address: manning@ess.ucla.edu (C.E. Manning).

¹ Current address: Exxon Mobil Corporation, PO Box 4778, Houston, TX, 77210-4770, USA.

^{0009-2541/\$ -} see front matter © 2008 Published by Elsevier B.V. doi:10.1016/j.chemgeo.2008.06.054