INTRODUCTION

Geikielite (Gk) and baddeleyite (Bd) are common trace minerals in contact metamorphosed siliceous dolomitic limestones that develop during prograde metamorphism at the expense of detrital rutile (Rt) and zircon (Zrn) by the reactions:

$$\text{TiO}_2 + \text{CaMg(CO}_3\text{)}_2 = \text{MgTiO}_3 + \text{CaCO}_3 + \text{CO}_2$$ (1)

rutile dolomite geikielite calcite fluid

and

$$\text{ZrSiO}_4 + 2 \text{CaMg(CO}_3\text{)}_2 = \text{ZrO}_2 + \text{Mg}_2\text{SiO}_4 + 2 \text{CaCO}_3 + 2 \text{CO}_2$$ (2)

zircon dolomite baddeleyite forsterite calcite fluid

[these and all other abbreviations for minerals follow Kretz (1983)]. Isograds can be mapped in contact aureoles based on reactions 1 and 2, and they lie at grades above that of the forsterite (Fo) isograd but below that of the periclase (Per) isograd (e.g., Ferry 1996a) where the major minerals in marbles are dolomite (Dol), calcite (Cal), and Fo. Equilibria involving Gk and Bd based on reactions 1 and 2 therefore offer the potential to constrain pressure (P) and the activity of CO$_2$ (a_{CO_2}) over a range of metamorphic conditions at which the major minerals in siliceous dolomitic marbles are uninformative. Furthermore, because Bd can be dated radiometrically, equilibria among Bd, Zrn, Dol, Cal, and Fo in principle can help define quantitatively the $P-a_{\text{CO}_2}$-temperature (T)-age conditions of a specific mineral reaction during metamorphism. In order for the potential to be realized fully, however, accurate thermodynamic data are required for Gk and Zrn, and this was the motivation for the phase equilibrium experiments. The reactions:

$$\text{TiO}_2 + \text{MgCO}_3 = \text{MgTiO}_3 + \text{CO}_2$$ (3)

rutile magnesite geikielite fluid

and

$$\text{ZrSiO}_4 + 2 \text{MgCO}_3 = \text{ZrO}_2 + \text{Mg}_2\text{SiO}_4 + 2 \text{CO}_2$$ (4)

zircon magnesite baddeleyite forsterite fluid

were investigated rather than reactions 1 and 2 because thermodynamic analysis of equilibria based on reactions 3 and 4 is uncomplicated by the effects of solid solution between Cal and Dol. Current thermodynamic databases (Berman 1988, updated 1992; Holland and Powell 1998, updated 2001) predict that reactions 1 and 3 and reactions 2 and 4 are almost parallel in T-P space separated by only 40–60 °C at constant P. Reactions 3 and 4 therefore are good analogs to reactions 1 and 2 and, furthermore, have direct application to coesite- and diamond-bear-
ing ultrahigh-pressure (UHP) metamorphic rocks that contain magnesite (Mgs), Rt, and Zrn (Liu et al. 1995; Zhang and Liu 1996; Dobrzhizeitkaya et al. 2001) and to diamond-bearing mantle samples that contain Zrn and Bd or Rt and Mg-rich ilmenite (Schärer et al. 1997; Zhao et al. 1999; Sobolev and Yefimova 2000).

EXPERIMENTAL METHODS

Apparatus

Experiments were conducted in a 2.54 cm-diameter, end-loaded, piston-cylinder apparatus using NaCl as the pressure medium and a cylindrical graphite heater sleeve [described in greater detail by Manning and Boettcher (1994)]. Pressure was raised at room T to 1–3 kbar below the target P, and T was then raised to the target T. Pressure was bled continuously between ≈600 °C and the target T to maintain the value of the experiment. Pressure was measured by a Heise gauge and maintained to within ±100 bars of the Pex values reported in Tables 1 and 2. Temperature was measured and controlled with a Pt-Pt10Rh10 thermocouple that was separated from the sample capsule by a Pt shim =0.1 mm thick. Temperature was typically maintained within ±1 °C of the values reported in Tables 1 and 2 and in all cases within ±2 °C. Accuracy of the thermocouples at room P is ±1 °C or better. The standard convention is to apply no P correction to the thermocouple readings (e.g., Manning and Boettcher 1994). The uncertainty in the values of T reported in Tables 1 and 2 is therefore taken as ±3 °C.

Although the piston-cylinder apparatus is considered virtually frictionless under the conditions of the experiments (e.g., Manning and Boettcher 1994; Newton and Manning 2000), the assumption (as well as the calibration of the Heise gauge) was tested by a set of experiments on the equilibrium among brucite (Brc), Per, and H2O fluid. Coarse cleavage fragments of Per [synthesized by Muscle Shoals Electrochemical Company and the same material used by Koziol and Newton (1995) and by Aranovich and Newton (1998)] were welded with distilled and deionized H2O in 17-mm-long, 5-mm-diameter Pt capsules that were then folded into the same geometry as those used in the other phase-equilibrium experiments. An experiment that was brought to 851 °C and 11.0 kbar and then immediately quenched yielded approximately equal amounts of Per and Brc (estimated visually from a grain mount in immersion oil) because target P-T conditions were reached through the Brc stability field. Two other experiments at 851 °C of 5 h duration produced >95% Per at 10.8 kbar and >95% Brc at 11.2 kbar. The experiments reversed the Brc-Per-H2O equilibrium at 851 °C between 10.8 and 11.2 kbar. The true P of the Brc-Per-H2O equilibrium at 851 °C was considered that computed from the Holland and Powell (1998, updated 2001) database, 11.0 kbar. [For comparison, P of the Brc-Per-H2O equilibrium at 851 °C predicted from the data of Berman (1988, updated 1992) is 11.1 kbar.] The P correction for the apparatus therefore was taken as ±200 bars. Considering the ±100 bar variation in P during reversal experiments on reactions 3 and 4, values of P reported in Tables 1 and 2 are believed uncertain by no more than ±300 bars.

Starting materials

Starting materials used in the phase equilibrium experiments were synthetic minerals from a variety of sources. Magnesite was the same material used by Koziol and Newton (1995) synthesized in a Morey vessel from hydrous magnesium carbonate. Forsterite was the same material used by Charlu et al. (1975) synthesized from a melt by Union Carbide Co. X-ray diffraction (XRD) traces of both materials displayed peaks for Mgs and Fo only. Rutile, Gk, Zrn, and Bd were synthesized hydrothermally from laboratory reagents in the presence of distilled and deionized H2O. Rutile was crystallized from TiO2 at 787 °C and 10.0 kbar for 6 h. An XRD trace of the experimental product displayed only Rt peaks. A mixture of Gk and Rt was

TABLE 1. Reversed experimental data for the reaction: Rt + Mgs = Gk + CO2 (reaction 3)

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>U17</th>
<th>U19</th>
<th>U10</th>
<th>U18</th>
<th>U11</th>
<th>U9</th>
<th>U13</th>
<th>U14</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(°C)</td>
<td>800</td>
<td>800</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Pex (kbar)*</td>
<td>7.3</td>
<td>7.6</td>
<td>8.9</td>
<td>9.0</td>
<td>9.2</td>
<td>9.3</td>
<td>10.9</td>
<td>11.3</td>
</tr>
<tr>
<td>Mix (mg)†</td>
<td>2.903</td>
<td>3.765</td>
<td>3.056</td>
<td>4.036</td>
<td>3.667</td>
<td>3.697</td>
<td>3.855</td>
<td>3.705</td>
</tr>
<tr>
<td>Ag2C2O4 (mg)‡‡</td>
<td>2.129</td>
<td>2.409</td>
<td>1.835</td>
<td>2.661</td>
<td>2.252</td>
<td>2.198</td>
<td>2.023</td>
<td>2.017</td>
</tr>
<tr>
<td>Initial CO2 (μg)#</td>
<td>589</td>
<td>667</td>
<td>508</td>
<td>736</td>
<td>623</td>
<td>608</td>
<td>560</td>
<td>558</td>
</tr>
<tr>
<td>t(h)#</td>
<td>28</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>25</td>
<td>25</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>ΔCO2 (μg)#</td>
<td>+142</td>
<td>-397</td>
<td>+486</td>
<td>-309</td>
<td>-33</td>
<td>-194</td>
<td>+97</td>
<td>-160</td>
</tr>
<tr>
<td>Stable assemblage**</td>
<td>Gk R+Mgs Gk R+Mgs R+Mgs R+Mgs Gk R+Mgs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% reaction††</td>
<td>+32%</td>
<td>-68%</td>
<td>+100%</td>
<td>-50%</td>
<td>-6%</td>
<td>-34%</td>
<td>+16%</td>
<td>-28%</td>
</tr>
<tr>
<td>H2O (μg)‡‡</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>XCO2 §§§</td>
<td>0.933</td>
<td>0.844</td>
<td>0.936</td>
<td>0.967</td>
<td>0.879</td>
<td>0.874</td>
<td>0.910</td>
<td>0.878</td>
</tr>
<tr>
<td>Pex (kbar)##</td>
<td>7.1</td>
<td>7.0</td>
<td>8.6</td>
<td>8.8</td>
<td>8.7</td>
<td>8.7</td>
<td>10.5</td>
<td>10.7</td>
</tr>
</tbody>
</table>

* P of the experiment.
† Initial mass of mineral reactants and products.
‡ Initial mass of Ag2C2O4.
§ Initial mass CO2 after decomposition of Ag2C2O4 (using measured mass yield of 95.5% of stoichiometric value).
Duration of experiment.
|| Weight loss of punctured capsule after experiment minus initial mass CO2 (positive values indicate progress of the decarbonation reaction, negative values indicate progress of the carbonation reaction).
** Inferred stable reactant or product minerals at conditions of experiment.
†† % reaction (positive for decarbonation, negative for carbonation).
‡‡ Weight loss of punctured inner capsule after baking at 300 °C for 10–20 min (assumed H2O).
#$ X_{CO2}$ of fluid at end of experiment computed from measured weight loss of punctured capsule at room T, after baking at 300 °C, and inferred CO-content (see text).
P corrected from Pex and computed X_{CO2} at end of experiment to value for equilibrium with pure CO2 fluid (see text).
crystallized from a combination of MgO and TiO₂ with bulk composition MgO:TiO₂ = 1.0:1.1 (molar) at 850 °C and 15.0 kbar for 7 h. An XRD trace of the material displayed only Gk and Rt peaks. A combination of SiO₂ and ZrO₂ with bulk composition SiO₂:ZrO₂ = 1.0:1.1 (molar), crystallized at 850 °C and 15.0 kbar for 29 h, produced a mixture of Zrn and Bd with a few percents of quartz (as judged from an XRD trace). Sufficient ZrO₂ was added to change the bulk composition of the Zrn-Bd-quartz mixture to SiO₂:ZrO₂ = 1.0:2.0 (molar), and the new mixture was recrystallized at 850 °C and 15.0 kbar for 25 h. The product was a mixture of Zrn and Bd in the molar ratio 1:1 whose XRD trace displayed only Zrn and Bd peaks. Mineral starting material for experiments on reaction 3 was a combination of Rt, Mgs, and the Gk-Rt mixture to give minerals in the molar proportions Rt:Mgs:Gk = 1:1:1. Mineral starting material for experiments on reaction 4 was a combination of Fo, Mgs, and the Zrn-Bd mixture to give minerals in the molar proportions Zrn:Mgs:Bd:Fo = 1:2:1:1. The mineral starting mixtures were dispersed in an ethanol suspension onto a polished carbon or glass substrate, carbon coated, and examined with scanning back-scattered electron microscopy (SEM) using the JEOL JXA-8600 electron microprobe at Johns Hopkins University. Only the phases Rt, Mgs, Gk, Zrn, Bd, and Fo were observed. The source for CO₂ in the starting materials was commercial silver oxalate reagent (nominally Ag₂C₂O₄) which decomposes to Ag and CO₂ at the conditions of the experiments.

Experimental procedure

The design of the phase-equilibrium experiments followed that of Koziol and Newton (1995, 1998). Between 2.9 and 4.5 mg of the stoichiometric mineral mixtures were carefully weighed with a Metler M3 microbalance (1 σ = 2 μg) and loaded into 13 mm long, 2 mm diameter Pt capsules with sufficient silver oxalate (1.8–4.9 mg) to produce CO₂ in excess of what could completely carbonate the mineral mixture. The capsules were arc-welded and folded in half. To minimize reduction of the CO₂ by H₂ evolved from the sample assembly (Rosenbaum and Slagle 1995), each sealed and folded capsule was placed in an outer 19 mm-long, 5 mm-diameter Pt capsule with 51.3–78.7 mg hematite (Hem) and 10.6–18.3 mg distilled and deionized H₂O. Loaded outer capsules were also arc-welded and folded in half. The double capsule was held at elevated P and T for 7–28 h.

Experiments were terminated by shutting off power to the apparatus. Within 20 s, T dropped to <200 °C and P dropped by ~3 kbar. After the sample reached room T, the residual P was released over several min. The double capsule was washed in distilled and deionized H₂O and dried for 5 min at 115 °C in a 1-atm oven. With the exception of three experiments in Tables 1 and 2, all outer capsules exuded H₂O when punctured and contained abundant magnetite (Mag, produced during the experiment) and some unreacted Hem, confirming that oxygen and hydrogen fugacities were buffered at all times by Hem + Mag + H₂O. In two of the exceptions (U14, U40) Hem + Mag were present but not H₂O, and in the third (U36), Mag was present but neither Hem nor H₂O. Even in the case of these three exceptions, oxygen and hydrogen fugacities evidently were buffered by Hem + Mag + H₂O at the beginning of the experiment, which (as will be discussed further below) is sufficient to prevent significant reduction of CO₂ in the inner capsule. The inner capsule was then removed, washed in distilled and deionized H₂O, dried for 5 min at 115 °C, and weighed. The inner capsule was then punctured with a steel needle (causing an audible hiss of released gas), weighed a second time, dried at 115 °C for 10–20 min, reweighed, dried at 300 °C in a 1-atm furnace for 10–20 min, and weighed again. The weight change between the first and second weighing was interpreted as loss of CO₂. In every case the weight change of the punctured inner capsule after drying at 115 °C was 0±2 μg. In all but one experiment (U29), however, there was a significant weight loss

Table 2. Reversed experimental data for the reaction: Zn + 2 Mgs = Bd + Fo + 2 CO₂ (reaction 4)

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>U39</th>
<th>U29</th>
<th>U21</th>
<th>U40</th>
<th>U42</th>
<th>U22</th>
<th>U23</th>
<th>U36</th>
<th>U30</th>
<th>U28</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(°C)</td>
<td></td>
</tr>
<tr>
<td>P₉ₐ (kbar)</td>
<td>7.2</td>
<td>7.5</td>
<td>7.8</td>
<td>8.8</td>
<td>9.3</td>
<td>9.7</td>
<td>10.2</td>
<td>10.9</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>Ag₂C₂O₄ (mg)‡</td>
<td>2.101</td>
<td>2.351</td>
<td>2.523</td>
<td>2.099</td>
<td>3.008</td>
<td>3.425</td>
<td>3.845</td>
<td>4.875</td>
<td>3.560</td>
<td></td>
</tr>
<tr>
<td>Initial CO₂ (μg)§</td>
<td>581</td>
<td>883</td>
<td>698</td>
<td>581</td>
<td>832</td>
<td>948</td>
<td>1064</td>
<td>1349</td>
<td>985</td>
<td></td>
</tr>
<tr>
<td>t(h)#</td>
<td>24</td>
<td>25</td>
<td>27</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>12</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ΔCO₂ (μg)‖</td>
<td>+99</td>
<td>−8</td>
<td>−35</td>
<td>−469</td>
<td>94</td>
<td>−133</td>
<td>−222</td>
<td>+33</td>
<td>−106</td>
<td></td>
</tr>
<tr>
<td>Stable assemblage**</td>
<td>Bd+Fo</td>
<td>NR</td>
<td>Zrn+Mgs</td>
<td>Bd+Fo</td>
<td>Bd+Fo</td>
<td>Zrn+Mgs</td>
<td>Zrn+Mgs</td>
<td>Bd+Fo</td>
<td>Zrn+Mgs</td>
<td></td>
</tr>
<tr>
<td>% reaction††</td>
<td>+20%</td>
<td>NR</td>
<td>−6%</td>
<td>+100%</td>
<td>+15%</td>
<td>−22%</td>
<td>−35%</td>
<td>+5%</td>
<td>−19%</td>
<td></td>
</tr>
<tr>
<td>H₂O (μg)‡‡</td>
<td>9</td>
<td>2</td>
<td>8</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>21</td>
<td>16</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>X₀₂ †‡‡</td>
<td>0.962</td>
<td>0.995</td>
<td>0.971</td>
<td>0.955</td>
<td>0.961</td>
<td>0.934</td>
<td>0.914</td>
<td>0.963</td>
<td>0.955</td>
<td></td>
</tr>
<tr>
<td>P₉ₐ (kbar)##</td>
<td>7.1</td>
<td>7.5</td>
<td>7.7</td>
<td>8.6</td>
<td>9.2</td>
<td>9.4</td>
<td>9.8</td>
<td>10.7</td>
<td>10.9</td>
<td></td>
</tr>
</tbody>
</table>

* P of the experiment.
† Initial mass of mineral reactants and products.
‡ Initial mass of Ag₂C₂O₄.
§ Initial mass CO₂ after decomposition of Ag₂C₂O₄ (using measured mass yield of 95.5% of stoichiometric value).
Duration of experiment.
‖ Weight loss from punctured inner capsule after experiment minus initial mass CO₂ (positive values indicate progress of the decarbonation reaction, negative values indicate progress of the carbonation reaction).
** Inferred stable reactant or product minerals at conditions of experiment. NR = no reaction within uncertainty of measurement.
†† % reaction (positive for decarbonation, negative for carbonation). NR = no reaction within uncertainty of measurement.
‡‡ Weight loss of punctured inner capsule after baking at 300 °C for 10–20 min (assumed H₂O).
†‡‡ X₀₂ of fluid at end of experiment computed from measured weight loss of punctured capsule at room T, after baking at 300 °C, and inferred CO₂-content (see text).
Corrected from P₉ₐ and computed X₀₂ at end of experiment to value for equilibrium with pure CO₂ fluid (see text).
of the punctured inner capsule after drying at 300 °C, 6–21 μg, which was interpreted as loss of H₂O.

Interpretation of weight measurements

CO₂ and H₂O contents of starting materials. Quantitative interpretation of the measured CO₂ and H₂O losses required accurate assessment both of the CO₂ content of the silver oxalate and of the amount of any H₂O adsorbed by the silver oxalate and the mineral starting materials. A CO₂ yield less than stoichiometric values was expected because silver oxalate gradually decomposes by photolysis. In three sets of measurements, 3.7–4.1 mg of silver oxalate were loaded into 13 mm-long, 5 mm-diameter Pt tubes and sealed by arc welding. The sealed Pt tubes were held at 300–400 °C for 10–60 min in a 1-atm furnace, weighed with the microbalance, punctured with a steel needle, and reweighed. The weight loss was interpreted as CO₂ evolved by the decomposition of silver oxalate and corresponded to yields 95.1, 95.5, and 95.7 wt% of the value expected from ideal stoichiometry. An average CO₂ yield of 95.5% stoichiometric was adopted for the silver oxalate. The punctured capsules were reheated at 300 °C for 10–60 min and weighed a third time. A small further decrease in weight, 2–4 μg, was interpreted as loss of adsorbed H₂O. The average adsorbed H₂O was 0.76 μg/mg silver oxalate. The amount of H₂O adsorbed onto the mineral starting materials was measured by loading 3.5 mg of the Rt-Mgs-Gk mix and 4.7 mg of the Zrn-Mgs-Bd-Fo mix into 13 mm-long, 2 mm-diameter Pt tubes that were sealed by arc welding. The sealed Pt tubes were held at 300 °C for 15–20 min in a 1-atm furnace, weighed with the microbalance, punctured with a steel needle, and reweighed. The weight loss from the punctured capsules, 6–7 μg, was interpreted as loss of adsorbed H₂O. The Rt-Mgs-Gk mix adsorbed 1.73 μg H₂O/mg, and the Zrn-Mgs-Bd-Fo mix adsorbed 1.49 μg H₂O/mg. A similar measurement demonstrated that the synthetic Rt adsorbed no detectable H₂O. The Rt therefore was used in a final experiment to demonstrate that the CO₂ yield from silver oxalate at 1 atm was the same as the yield at P-T conditions of the phase-equilibrium experiments. A double capsule was prepared identical to those used in the phase-equilibrium experiments but with the mineral reaction mix replaced in the inner capsule by 7.3 mg synthetic Rt. The double capsule was held in the piston-cylinder apparatus at 850 °C and 9.0 kbar for 2 h, quenched, and analyzed in the usual fashion. The CO₂ loss from the inner capsule was 95.5% of the stoichiometric value for silver oxalate (the same within error of measurement as the 1-atm yields), and the loss of H₂O was 18 μg.

Analysis of experimental products. The stable mineral assemblage at the conclusion of the phase-equilibrium experiments was determined by subtracting the amount of CO₂ initially produced by the (calibrated) decomposition of silver oxalate from the CO₂ loss at the end of the experiment. If the difference, ΔCO₂ (Tables 1 and 2), was positive, a decarbonation reaction occurred during the experiment, and minerals corresponding to the decarbonated side of reaction 3 or 4 were stable. If ΔCO₂ was negative, a carbonation reaction occurred during the experiment, and minerals corresponding to the carbonated side of reaction 3 or 4 were stable. Measured absolute values of ΔCO₂ > 30 μg were considered significant. One value of ΔCO₂ = –8 μg (U29, Table 2), although barely outside weighing errors, was interpreted conservatively as a case of no reaction. Considering the measured mass of the mineral reaction mix replaced in the inner capsule by 7.3 mg synthetic Rt-Mgs-Gk mix and 4.7 mg of the Zrn-Mgs-Bd-Fo mix into 13 mm-long, 2 mm-diameter Pt tubes that were sealed by arc welding. The sealed Pt tubes were held at 300 °C for 15–20 min in a 1-atm furnace, weighed with the microbalance, punctured with a steel needle, and reweighed. The weight loss from the punctured capsules, 6–7 μg, was interpreted as loss of adsorbed H₂O. The average adsorbed H₂O was 0.76 μg/mg silver oxalate. The amount of H₂O adsorbed onto the mineral starting materials was measured by loading 3.5 mg of the Rt-Mgs-Gk mix and 4.7 mg of the Zrn-Mgs-Bd-Fo mix into 13 mm-long, 2 mm-diameter Pt tubes that were sealed by arc welding. The sealed Pt tubes were held at 300 °C for 15–20 min in a 1-atm furnace, weighed with the microbalance, punctured with a steel needle, and reweighed. The weight loss from the punctured capsules, 6–7 μg, was interpreted as loss of adsorbed H₂O. The Rt-Mgs-Gk mix adsorbed 1.73 μg H₂O/mg, and the Zrn-Mgs-Bd-Fo mix adsorbed 1.49 μg H₂O/mg. A similar measurement demonstrated that the synthetic Rt adsorbed no detectable H₂O. The Rt therefore was used in a final experiment to demonstrate that the CO₂ yield from silver oxalate at 1 atm was the same as the yield at P-T conditions of the phase-equilibrium experiments. A double capsule was prepared identical to those used in the phase-equilibrium experiments but with the mineral reaction mix replaced in the inner capsule by 7.3 mg synthetic Rt. The double capsule was held in the piston-cylinder apparatus at 850 °C and 9.0 kbar for 2 h, quenched, and analyzed in the usual fashion. The CO₂ loss from the inner capsule was 95.5% of the stoichiometric value for silver oxalate (the same within error of measurement as the 1-atm yields), and the loss of H₂O was 18 μg.

Hydrogen diffusion. The H₂O loss from experimental charges at the end of most experiments was larger than can be explained by release of H₂O adsorbed on the silver oxalate and mineral starting materials. The additional H₂O most likely was produced by diffusion of H₂ from the sample assembly into the inner capsule where it reacted with CO₂ to form H₂O and CO by the reaction:

\[\text{H}_2 + \text{CO}_2 = \text{CO} + \text{H}_2\text{O} \]

(Rosenbaum and Slagel 1995). Measurable mass transport of H₂ occurred in spite of the presence of the Hem-Mag-H₂O buffer in the outer capsule separating the inner capsule from the rest of the sample assembly. The experiment involving synthetic Rt in place of a mineral reaction mix both unequivocally confirms H₂ diffusion into the inner capsules of the phase-equilibrium experiments and constrains the duration over which the process occurred. The Rt had no adsorbed H₂O and the silver oxalate (1.824 mg loaded) just 1 μg. No reaction was possible between Rt and either silver oxalate or its decomposition products at the P-T conditions of the experiment. Loss of H₂O from the inner capsule at the end of the 2 h experiment, however, was 18 μg. The only plausible explanation for the 18 μg H₂O loss is addition of H₂ to the inner capsule. Because the measured H₂O loss of 18 μg is within the range of H₂O losses in phase-equilibrium experiments lasting 24–28 h (Tables 1-2), H₂ transport must have been essentially complete within the first two hours of the phase-equilibrium experiments. The short duration of H₂ diffusion could be explained if the H₂ was produced by rapid dehydration of the nominally dry NaCl pressure medium and subsequent reaction of evolved H₂O with the hot graphite furnace.

Correction for H₂O in experimental charges. Because of H₂O adsorbed onto starting materials and produced by H₂ dif-

...
fission at the start of the experiments, the phase-equilibrium experiments were not conducted in the presence of a pure CO$_2$ fluid. Judging from the calibrated CO$_2$ yield of the silver oxalate and the H$_2$O loss measured at the end of the experiments, the initial fluid composition in the inner capsule was usually $X_{CO_2} = 0.90–0.95$. For experiments conducted at P above the P-X_{CO_2} curve for reaction 3 or 4, a carbonation reaction occurred and fluid composition was driven to lower values of X_{CO_2} at the end of the experiment (Fig. 1). For experiments conducted at P below the relevant P-X_{CO_2} curve, a decarbonation reaction occurred and fluid composition was driven to larger values of X_{CO_2} at the end of the experiment. If equilibrium was attained, the X_{CO_2} at the end of the experiment and the P-X_{CO_2} curve at T of the experiment can be used to define the difference in P between that of the experiment (P_{ex}, Tables 1 and 2) and P of the equilibrium in the presence of pure CO$_2$ fluid (Fig. 1). Subtraction of the P correction from P_{ex} provides an estimate of the P for equilibrium of mineral reactants and products with pure CO$_2$ fluid (P_{cor}, Tables 1 and 2).

Values of X_{CO_2} at the end of each experiment (Tables 1 and 2) were computed from measured CO$_2$ and H$_2$O losses from the inner capsule. The amount of CO present was estimated indirectly from the fraction of the H$_2$O loss attributable to H$_2$ diffusion and the stoichiometry of reaction 5. The fraction of the H$_2$O loss attributable to H$_2$ diffusion was taken as the total H$_2$O loss less H$_2$O adsorbed onto the measured amounts of silver oxalate and mineral reaction mix loaded into each inner capsule. The P corrections were computed from the data of Holland and Powell (1998, updated 2001). Corrections calculated from the data of Berman (1988, updated 1992) agreed with those computed from the data of Holland and Powell within $±100$ bars, the resolution of calculations made with the THERMOCALC program of Holland and Powell. The P corrections are probably accurate because they only involve the molar volumes and compressibilities of minerals and the fugacity of CO$_2$ (f_{CO_2}) in CO$_2$-H$_2$O solutions.

If equilibrium was not attained in the experiments, the P correction underestimates the difference between P_{ex} and the P for equilibrium with pure CO$_2$ for experiments in which carbonation occurred and overestimates the difference for experiments in which decarbonation occurred. Thus, P_{cor} for carbonation and decarbonation experiments at a given T bracket the true P of equilibrium between minerals and pure CO$_2$ fluid regardless of the approach to equilibrium during the experiment.

RESULTS

Results of the phase-equilibrium experiments are summarized in Tables 1 and 2 and in Figures 2 and 3. Values of P_{cor} in experiments on reaction 3 differ by 100–200 bars between carbonation and decarbonation half-brackets at each T, indicating a high precision of the experiments. The equilibrium based on reaction 3 has been bracketed between 7.0 and 7.1 kbar at 800 °C, between 8.6 and 8.7 kbar at 850 °C, and between 10.5 and 10.7 kbar at 900 °C. The P correction for experiments at 800 °C resulted in an estimated P_{ex} 100 bars less for the carbonation half-bracket than for the decarbonation half-bracket (Table 1, Fig. 2). This apparent inconsistency, however, is within the precision of measurement of P_{ex} ($±100$ bars). Values of P_{cor} are within $±100$ bars for four experiments at 850 °C and P_{cor} = 8.9–9.3 kbar with the amount of reaction varying between −50% (carbonation) and +100% (decarbonation), suggesting a close approach to mineral-fluid equilibrium and validating the procedure for correcting P.

Values of P_{cor} in experiments on reaction 4 differ by 200 bars between the narrowest carbonation and decarbonation half-brackets at 850 and 900 °C and by 600 bars at 800 °C, also indicating a high precision of the experiments. The equilibrium based on reaction 4 has been bracketed between 7.1 and 7.7 kbar at 800 °C, between 9.2 and 9.4 kbar at 850 °C, and between 10.7 and 10.9 kbar at 900 °C. Values of P_{cor} for four experiments at 850 °C and P_{cor} = 8.8–10.2 kbar correlate with % reaction, implying a somewhat greater departure from mineral-fluid equilibrium than in experiments involving Rt, Mgs, and Gk. The difference is consistent with the refractory char-

![Figure 1](image-url)
acter of Zrn.

Results are reported for experiments U18, U36, and U40 in Tables 1 and 2 and Figures 2 and 3, even though the Hem-Mag-H$_2$O buffer was not preserved in the outer capsule. If there had been significantly more reduction of CO$_2$ in these three experiments, the measured H$_2$O loss from the inner capsules should have been larger than in the others. The H$_2$O losses for experiments U18, U36, and U40, however, are within the range of H$_2$O losses for experiments that preserved the Hem-Mag-H$_2$O buffer (Tables 1 and 2). Experimental results for the three experiments therefore appear to be valid. Probably the outer capsule of experiments U18, U36, and U40 leaked slowly and retained Hem, Mag, and H$_2$O at least for the first 2 h when most of the H$_2$ diffused into the capsule from the sample assembly.

DISCUSSION

Evaluation of thermodynamic properties of geikielite and zircon

The principal motivation of the experiments was to evaluate values for the thermodynamic properties of Gk and Zrn. Considering uncertainties in P (± 300 bars) and T (± 3 °C), curves for equilibria based on reactions 3 and 4, calculated from both the Berman (1988, updated 1992) and Holland and Powell (1998, updated 2001) databases, pass through all experimental brackets (Figs. 2 and 3). The experimental results therefore cannot identify any significant inaccuracies in the thermodynamic data for Gk or Zrn (or for Bd, Fo, Mgs, Rt, or CO$_2$).

The good agreement between calculated curves and experimental results in Figures 2 and 3, however, appears to be somewhat fortuitous. Typically, the principal source of uncertainty in thermodynamic calculations is the enthalpies of minerals that are mostly derived from laboratory phase-equilibrium experiments. Tabulated values of the enthalpy for Gk are derived from determinations of the equilibrium based on reaction 3 by Haselton et al. (1978) in reconnaissance experiments at 950–1250 °C and 13–26 kbar. A number of factors introduce relatively large uncertainties into any thermodynamic analysis of their results. The experiments were unreversed and attainment or bracketing of equilibrium was not assured. Fluid present during the experiments may not have been pure CO$_2$ because capsules were unsealed and hydrogen fugacity was not buffered. Uncertainties in P (± 1 kbar) and T (± 15 °C) were relatively large. Values of f_{CO_2} at the conditions of their experiments are not as well known as at lower P. Tabulated values of enthalpy for Zrn are derived from experiments by Schuiling et al. (1976) that bracketed the activity of SiO$_2$ defined by Zrn + Bd at 1000 K and 1 kbar between the value defined by sphene (CaTiSiO$_3$) + perovskite (CaTiO$_3$) and that defined by albite (NaAlSi$_3$O$_8$) + nepheline (NaAlSiO$_4$). The relatively large uncertainty in enthalpy derived for Zrn appears in Table 5 of Holland and Powell (1998) as a standard deviation for the enthalpy of Zrn that is larger on a percentage basis than for any other orthosilicate listed. Direct measurement of the enthalpy of Zrn by high-T solution calorimetry (Ellison and Navrotsky 1992) is also highly uncertain (± 3.1 kJ/mol, standard error).

Experimental results of this study lead to more precise esti-
mates of the molar enthalpy of formation and molar Gibbs free energy of formation from the elements at 1 bar and 298 K (ΔH^0 and ΔG^0, respectively) for Gk and Zrn. Assuming that all thermodynamic data for Mgs, Rt, Fo, Bd, and CO$_2$ in Berman (1988, updated 1992) are correct and that data for the entropy, heat capacity, and molar volume of Gk and Zrn are correct, the most restrictive half-brackets in Tables 1 and 2 limit ΔH^0 and ΔG^0 for Gk and Zrn to the ranges listed in Table 3. A similar analysis leads to ranges in the values of ΔH^0 and ΔG^0 for Gk and Zrn consistent with the Holland and Powell (1998, updated 2001) database (Table 3). Estimates of ΔH^0 for Zrn, based on experimental data in Table 2 and the databases of either Berman or Holland and Powell (Table 3), are within error of measurement of the value determined using high-T solution calorimetry by Ellison and Navrotsky (1992), –2034.2 ± 3.1 (±1 standard error) kJ/mol. Results of this study confirm the accuracy of tabulated thermodynamic data for Gk and Zrn, and, more importantly, significantly reduce the uncertainty in those values. Calculations of phase equilibria involving Gk or Zrn using either the Holland and Powell or Berman databases therefore have been put on a firmer foundation.

Selected applications to field occurrences

Separation of geikielite and baddeleyite isograds. Isograds based on the prograde development of Gk and Bd by reactions 1 and 2 occur close together in contact aureoles. In the Ballachulish aureole, Scotland, for example, the Gk and Bd isograds occur at least 50 m but no more than 350 m apart (Ferry 1996a). The experimental data explain the small separation of the isograds. The brackets in Tables 1 and 2 require that the P-T curve for reaction 3 be no more than 40 °C higher and no more than 10 °C lower than the P-T curve for reaction 4 at 9 kbar, the midpoint of the range of pressures investigated. Reactions 1 and 2 are related to reactions 3 and 4 by:

$$\text{CaMg(CO$_3$)$_2$} = \text{CaCO$_3$} + \text{MgCO$_3$}$$

(6).

dolomite calcite magnesite

Because ΔG^0 of reaction 6 is small at the P-T conditions of the experiments [±4–5 kJ, calculated from the data of Holland and Powell (1998, updated 2001)], Reactions 1 and 2 also must be close in P-T space. Calculated P-T curves for reactions 1 and 2 using the database of either Berman (1988, updated 1992) or Holland and Powell (1998, updated 2001) are <25 °C apart at any P within the range of the experiments, with the curve for reaction 1 at higher T than that for reaction 2. The close proximity of the Gk and Bd isograds in the field is a consequence of the close proximity of reactions 1 and 2 in P-T space at a given d_{CO_2}. The experimental data and thermodynamic calculations predict that the Bd isograd based on reaction 2 should lie at lower T and therefore farther from the intrusive contact in contact aureoles than the Gk isograd based on reaction 1. The opposite is observed in the Ballachulish aureole because mineral reactants and products of reaction 2 are pure substances or nearly so, whereas natural Gk in the Ballachulish aureole is an Mg-Fe solid solution with Mg/(Fe + Mg) = 0.48–0.59 near the Gk isograd. The reduced activity of MgTiO$_3$ in the Gk solid solution (estimated assuming ideal mixing) displaced the equilibrium based on reaction 1 to 20–60 °C below that of reaction 2 (the range in T displacement reflects the range in Gk compositions and differences between the thermodynamic databases used to make the estimate).

Fluid composition at the geikielite and baddeleyite isograds. The X_{CO_2} of fluid at the peak of metamorphism in Dol-Cal-Fo marbles bears on whether the carbonate rocks were infiltrated by reactive aqueous fluids (Ferry 1994). If X_{CO_2} is low, infiltration is indicated regardless of the geometry of fluid flow. If X_{CO_2} is high, either infiltration did not occur or the amount of fluid was small. Unfortunately the assemblage Dol-Cal-Fo typically contains no useful information about fluid composition. The development of Gk and Bd during prograde contact metamorphism in the Ballachulish aureole, Scotland, is an example of how calculation of X_{CO_2} from equilibria based on reactions 1 and 2, however, can provide estimates of fluid composition during metamorphism of Dol-Cal-Fo marbles. Pressure during contact metamorphism in the Ballachulish aureole was 3±0.5 kbar (Pattison 1991), and T at the peak of metamorphism at the Gk and Bd isograds was 640–650 °C and 660–710 °C, respectively [Ferry (1996a); uncertainty in T reflects uncertainty in the exact location of the isograds]. Values of X_{CO_2} were computed for each isograd using both the Berman (1988, updated 1992) and the Holland and Powell (1998, updated 2001) databases. Reduced activities of components in Cal, Dol, Fo, and Gk were estimated from analyses of minerals in outcrops that bracket the isograd in the field and from ideal ionic mixing models (Rt, Zrn, and Bd are pure substances). Specifically, X_{CO_2} at the Gk and Bd isograds was bracketed using mineral compositions in samples 7A and 7C and samples 7D and 8A, respectively, of Ferry (1996a, his Fig. 1). The measured compositions of Dol and Fo in sample 7D are (Ca$_{1.00}$Mg$_{0.95}$Fe$_{0.05}$Mn$_{0.01}$)(CO$_3$)$_2$, and (Mg$_{1.19}$Fe$_{0.26}$Mn$_{0.01}$)SiO$_4$, respectively. The compositions of Cal in samples 7D and 8A

Table 3. Constraints on enthalpy and Gibbs free energy of geikielite and zircon from reversed experiments

<table>
<thead>
<tr>
<th>Function</th>
<th>Consistent with Berman database†</th>
<th>Consistent with H-P database‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH^0</td>
<td>-1570.70</td>
<td>-1569.66</td>
</tr>
<tr>
<td>ΔG^0</td>
<td>-1482.31</td>
<td>-1481.27</td>
</tr>
<tr>
<td>ΔH^2</td>
<td>-2031.90</td>
<td>-2030.80</td>
</tr>
<tr>
<td>ΔG^2</td>
<td>-1917.31</td>
<td>-1916.29</td>
</tr>
</tbody>
</table>

* Enthalpy and Gibbs free energy of formation from the elements at 1 bar and 298 K in kJ/mol.
§ Upper bound is largest value consistent with the most restrictive experimental half-bracket.
Lower bound is smallest value consistent with the most restrictive experimental half-bracket.
were those computed for equilibrium with Dol at 660 and 710 °C, respectively (Anovitz and Essene 1987). The composition of fictive Gk in sample 7A (Mg$_{0.73}$Fe$_{0.26}$Mn$_{0.01}$TiO$_3$) that would have formed had X$_{CO_2}$ been less than the lower bound was estimated from the measured composition of Fo in the rock and the average of all measured values of [(Mg/Fe)$_{Fo}$/(Mg/Fe)$_{Gk}$] and [(Mg/Mn)$_{Fe}$/(Mg/Mn)$_{Gk}$] from the aureole. All other mineral compositions used in the calculations appear in Table 2 of Ferry (1996a). A range in X$_{CO_2}$ values derives from differences in both T and mineral compositions for the samples that bracket each isograd. Using the Berman database, X$_{CO_2}$ = 0.72–1.0 and 0.70–1.0 at the Gk and Bd isograds, respectively. Using the Holland and Powell database, X$_{CO_2}$ = 0.54–0.88 and 0.74–1.0 at the Gk and Bd isograds, respectively. The high X$_{CO_2}$ at the Gk and Bd isograds implies that little or no chemically reactive aqueous fluid infiltrated Dol-Cal-Fo marbles in the Ballachulish aureole at the peak of prograde metamorphism, consistent with earlier conclusions based on both stable isotopic (Hoernes et al. 1991) and petrologic (Ferry 1996b) studies.

Activity of CO$_2$ during UHP metamorphism. Estimates of X$_{CO_2}$ during UHP metamorphism are <0.1 (Wang and Liou 1993; Zhang and Liou 1996). The low value of X$_{CO_2}$ potentially is inconsistent with reported occurrences of Mgs + Rt and Mgs + Zrn rather than Gk or Bd + Fo in UHP rocks (e.g., Liou et al. 1995; Zhang and Liou 1996; Dobrzhinetskaya et al. 2001). The potential inconsistency was evaluated by computing the lower limit on a$_{CO_2}$ required to stabilize Mgs + Rt instead of Gk and Mgs + Zrn instead of Bd + Fo during UHP metamorphism, i.e., a$_{CO_2}$, recorded by equilibria based on reactions 3 and 4 at the low-P limit and over the range of T estimated for UHP metamorphism in general, T = 400–800 °C along the Qtz-Cs equilibrium (Liou et al. 1994). All minerals were considered pure substances. The calculated lower bound is the same regardless of the database used [Berman (1988, updated 1992) or Holland and Powell (1998, updated 2001)] or the equilibrium considered (based on reaction 3 or reaction 4), 2·10^{-5} at 400 °C to 2·10^{-4} at 800 °C. For metamorphism at P above the Qtz-Cs equilibrium, minimum values of a$_{CO_2}$ would be lower still. The occurrence of Rt + Mgs and Zrn + Mgs in UHP metamorphic rocks therefore is fully consistent with low values of X$_{CO_2}$ inferred independently from other mineral equilibria (Wang and Liou 1993; Zhang and Liou 1996). In spite of the not uncommon occurrence of carbonate minerals in UHP rocks, there is currently no evidence for CO$_2$-rich fluids during UHP metamorphism.

Activity of CO$_2$ during mantle metasomatism and kimberlite-genesis. Upper limits on a$_{CO_2}$ in the mantle are recorded by the occurrence of Rt + Mg-rich ilmenite (Ilm) in rocks produced by mantle metasomatism (e.g., Zhao et al. 1999; Sobolev and Yefimova 2000) and by the occurrence of Zrn + Bd as megacrysts in kimberlites (e.g., Schärer et al. 1997). Specifically, the upper limits are defined by equilibria based on reactions 3 and 4 at the P-T conditions of equilibration of the mineral pairs. For example, application of reaction 3 to the occurrence of Ilm (X$_{MtO_2}$ = 0.48) and Rt equilibrated with mica, orthopyroxene, and diopside at 36 kbar and 1027 °C in a sample of mantle-derived vein material (Zhao et al. 1999) limits a$_{CO_2}$ to <0.18 during one instance of mantle metasomatism. The calculation considered Mgs to be a pure substance, assumed a$_{MgTiO_3}$ = X$_{MtO_2}$ [appropriate for the composition of ilmenite at the conditions of equilibration (Ghiorso 1990)], and used the thermodynamic database of Holland and Powell (1998, updated 2001). Calculated a$_{CO_2}$ is <0.17 if the database of Berman (1988, updated 1992) is used, and regardless of database, the upper bound decreases if a$_{MgCO_3}$<1. If results can be generalized, fluids causing mantle metasomatism evidently are not especially CO$_2$-rich. In principle, analogous constraints on a$_{CO_2}$ may be placed on the conditions of kimberlite genesis from application of reaction 4 to occurrences of Bd + Zrn megacrysts, assuming coexistence with mantle olivine, provided that the P-T conditions of their equilibration may be estimated. Additional estimates of a$_{CO_2}$ from equilibria based on reactions 3 and 4 and of oxygen fugacity from other equilibria involving Rt and Ilm (e.g., Zhao et al. 1999) will lead to a more complete chemical characterization of agents that effect melting and metasomatism in the mantle.

ACKNOWLEDGMENTS

Experiments were conducted while J.M.F. was a Visiting Professor at UCLA. We thank Natalie Cacciagli, Heather Lin, and Peter Tupper for advice in the piston-cylinder laboratory and Wayne Dollase for all X-ray diffraction measurements. We thank Andrea Koziol, Dave Patterson, and Bob Tracy for helpful reviews of the manuscript. Research supported by grant EAR-9805346 to J.M.F. and EAR-9909583 to C.E.M., both from the Division of Earth Sciences, National Science Foundation.

REFERENCES CITED

———(1998) Experimental determination of the reaction: magnesite + enstatite = forsterite + CO$_2$ in the ranges 6–25 kbar and 700–1100 °C. American Mineralo-