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Abstract

A thermodynamic model of SiO2–H2O mixing in sub- and supercritical fluids has been developed based on new and exist-
ing experimental data on the solubility of quartz in H2O. To supplement previously published data, we conducted new sol-
ubility experiments at 15 and 20 kbar and 900–1100 �C using hydrothermal piston–cylinder methods. At concentrations below
�10 mol% SiO2, solubility was measured by single-crystal weight loss. At higher concentrations, solubility was determined by
bracketing the presence and absence of quartz in quenched charges using multiple isothermal and isobaric runs with varying
SiO2–H2O ratios. These data were combined with previously published results to construct a thermodynamic model of
SiO2–H2O mixing. Following studies of silicate melts, the model takes oxygen in the fluid to be in three forms: free, molecular
H2O, Si-bridging oxygens ðO2�

br Þ, and the terminal hydroxyls ðOH�tmÞ of silanol groups. The equilibrium exchange of oxygen
between these forms can be written 1

2
H2Oþ 1

2
O2�

br ¼ OH�tm. The standard Gibbs free energy change of this reaction ðDG�Þ was
incorporated into a subregular solution model for mixing of SiO2 liquid and H2O fluid. The P–T dependences of DG� and
interchange energies were derived by an error minimization algorithm, producing thirteen independent fit parameters. The
model is applicable from 5 to 20 kbar and 500 �C to the dry melting curve of quartz. It reproduces experimentally derived
quartz solubility data to 3.8% on average (1r = 5.3%). The model also predicts hydrous melting of quartz, critical melt–vapor
mixing, activity–concentration relations, partial molar volume and entropy of aqueous silica, water speciation, and the ther-
mal expansivity, isothermal compressibility, and isobaric heat capacity of a fluid in equilibrium with quartz. The model pre-
dicts a critical end point in the SiO2–H2O system at 1067 �C and 9.33 kbar, in very good agreement with the accepted location
at �1080 �C and 9.5–10 kbar. The model is also in good agreement with previous estimates of the extent of silica polymer-
ization. The results of this study clearly demonstrate that there is an explicit link between polymerization chemistry and crit-
ical mixing of silicate–H2O solutions.
� 2012 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Understanding the thermodynamics of mixing between
silicate liquids and water at high pressure (P) and tempera-
ture (T) is of fundamental importance to studies of
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fluid–rock interaction in the lower crust and upper mantle
(Manning, 2004; Hack et al., 2007a,b). Owing to the low
solubility of silicates in H2O, lower and upper critical end
points tend to exist on their solubility and hydrous melting
curves. Although the P and T of lower critical end points
differ little from the critical point of pure H2O, upper crit-
ical end points vary widely, and may exert important con-
trols on geologic systems. For example, at pressures
greater than the pressure of an upper critical end point,
mineral solubility increases continuously as T increases,
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allowing fluids with subequal silicate and water contents to
be in equilibrium with the surrounding rock. Fluids of these
intermediate compositions may play a key role in transport
of material in subduction zones (Manning, 2004). Signifi-
cant effort has been made in establishing the locations of
critical end points in geologically relevant systems
(Kennedy et al., 1962; Shen and Keppler, 1997; Bureau
and Keppler, 1999; Stalder et al., 2000; Sowerby and
Keppler, 2002; Mibe et al., 2004, 2007, 2011; Kessel et al.,
2005a,b; Hermann and Spandler, 2008; Newton and
Manning, 2008); however, the thermodynamic and trans-
port properties of silicate–water systems, especially around
the upper critical end point, remain poorly constrained
(Hack et al., 2007a,b; Audétat and Keppler, 2004; Hack
and Thompson, 2011).

Silica is a major rock-forming oxide of the earth’s crust
and mantle, and it is among the most soluble oxides in H2O
at crustal and upper mantle conditions (Manning, 1994).
Silica’s high concentration and primary role in controlling
solute structure (Mysen, 1998, 2010a) make the binary
SiO2–H2O an essential foundation for understanding sili-
cate–water binary systems. Early experimental studies of
quartz solubility (e.g., Kennedy, 1950) found that quartz
has low solubility at low P and T near the critical point
of water, implying that the P and T conditions of the lower
critical end point of the SiO2–H2O system are not far re-
moved from those of the critical point of pure water. There
have been numerous models of quartz solubility along the
H2O steam curve, and to conditions of medium-grade crus-
tal metamorphism (5 kbar, 600 �C; e.g., Walther and Helge-
son, 1977, and references therein).

At P and T above 5 kbar and 600 �C, the solubility of
quartz in H2O increases considerably (Anderson and Burn-
ham, 1965; Manning, 1994). Empirical relationships to de-
scribe this increase in quartz solubility were developed by
Fournier and Potter (1982), Manning (1994), and Dolejs
and Manning (2010). In these studies, quartz solubility
was correlated with the specific volume or density of pure
water. Manning (1994) and Dolejs and Manning (2010)
found that quartz solubility below 900 �C and 20 kbar
could be described by a linear correlation of log SiO2 molal-
ity with log H2O density. These studies successfully predict
quartz solubility over a wide range of P and T, but become
inaccurate as the hydrous melting point is approached
(P900 �C) because of a rapid increase in solubility at higher T.

The formulations of SiO2 solubility in H2O by Walther
and Helgeson (1977), Fournier and Potter (1982), Manning
(1994), and Dolejs and Manning (2010) do not account for
two key, interrelated aspects of the chemistry of aqueous
silica: polymerization (e.g., Iler, 1979) and critical behavior
(Kennedy et al., 1962). While silica polymerization has long
been known in aqueous solutions at low temperature, Zo-
tov and Keppler (2000, 2002) and Newton and Manning
(2002, 2003) presented the first evidence for the polymeriza-
tion of aqueous SiO2 at high P and T. In these studies, spe-
ciation models were derived assuming the presence of two
species: SiðOHÞ4 monomers and Si2OðOHÞ6 dimers. While
the models provide constraints on silica activity and speci-
ation, they are not applicable at concentrations above �2 m
(3.4 mol%), where additional polymeric species and the
deviation of water activity from unity becomes significant
(Newton and Manning, 2008). Gerya et al. (2005) at-
tempted to take further polymerization into account by
assuming that successive SiO4�

4 attachments to a polymer
have the same equilibrium constant as the dimer-forming
reaction. This model describes silica solubility quite well
to 900 �C, and provides information on the speciation
and activity of silica. However, it does not provide for melt-
ing or critical phenomena. Doltsinis et al. (2007) used ab
initio molecular dynamics to show that various silica poly-
mers are chemically stable on short time frames (5–10 ps),
but computational limitations thus far preclude calculation
of relative abundances of species.

The second feature of the system SiO2–H2O not ade-
quately incorporated into previous models is the location
of the hydrous melting curve and its termination in an
upper critical end point. Kennedy et al. (1962) first deter-
mined the melting curve and proposed an upper critical
end point at 9.7 kbar and 1080 �C, where quartz coexisted
with a fluid containing �50 mol% SiO2. Quartz solubility
determinations by Nakamura (1974) imply that the
SiO2–H2O system is supercritical at 15 kbar, 900–1400 �C,
in agreement with Kennedy et al. (1962). Although the exis-
tence of the end point was challenged by Stewart (1967) and
Mysen (1998), the original finding of Kennedy et al. (1962)
has now been confirmed by Newton and Manning (2008).
General phase relations in the SiO2–H2O system consistent
with these results are shown in Fig. 1.

In silicate–H2O systems, the positions of hydrothermal
melting curves and their end points depend strongly on
the nature and extent of polymerization of aqueous silicate
species, which increase dramatically in abundance as melt-
ing is approached (Manning, 2004; Newton and Manning,
2008; Manning et al., 2010). Any model that seeks to com-
bine solubility and melting behavior in the system
SiO2–H2O must therefore account explicitly for silica poly-
merization in the aqueous phase. Using a subregular mixing
model involving monomers, dimers, and higher order poly-
mers, Newton and Manning (2008) predicted the speciation
of silica at 1080 �C and 10 kbar. They found that nearly
80% of the silica in solution in equilibrium with quartz
was contained in higher-order polymers. This model de-
scribes supercritical solubility and activity–concentration
relations, but only at a single pressure and temperature near
the upper critical end point.

In the present work, we seek to extend this approach by
formulating a model for the SiO2–H2O system that explains
quantitatively the solubility of stable and metastable SiO2-
bearing phases, the speciation of aqueous and molten SiO2,
activity–concentration relations (and therefore physical
properties based on the derivatives of activity), and stable
and metastable fluid immiscibility.

To determine mixing properties of the SiO2–H2O system
over a much broader pressure region more quantitatively,
we conducted new experiments on quartz solubility in
H2O between 900 and 1100 �C at 15 and 20 kbar. The
new results provide data that, in conjunction with previous
quartz solubility studies, constrain the first quantitative
thermodynamic model of SiO2–H2O mixing capable of
accurately describing quartz solubility, critical behavior,



Fig. 1. General phase relations in the SiO2–H2O systems within the relevant PT region of the model of this study. The solid bold curve is the
dry quartz melting curve, calculated from Jackson (1976). The dashed bold curve is the hydrous melting curve, terminating at the upper
critical end point (this study). The thin dashed curve is the transition from a to b quartz, calculated from Holland and Powell (1998) (2002
update).
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activity–composition relations, and speciation at high P

and T.

2. EXPERIMENTAL METHODS

Due to the wide solubility range investigated in this
study, two types of experiments were conducted: single-
crystal solubility runs at low SiO2 concentration (SC exper-
iments, Table 1), and phase-bracketing runs at high SiO2
Table 1
Experimental results.

Run Type P (kbar) T (�C) Time (h) H2

1 SC 15 900 2.5 26.
2 SC 15 900 20 24.
7 SC 15 950 3 24.
5 PB 15 1000 3 22.
10 PB 15 1000 3 16.
9 PB 15 1050 2.5 19.
3 SC 20 900 17.5 22.
11 PB 20 950 1.5 18.
12 PB 20 950 1.5 20.
13 PB 20 1000 1.5 20.
14 PB 20 1000 1.5 21.
16 PB 20 1100 1 9.4
18 PB 20 1100 1 4.8

Abbreviations: SC, single quartz crystal; PB, phase bracketing. In the qu
weighable quartz crystal, a plus sign indicates the presence of irretrievable
quartz, and a dash indicates a lack of quartz. Maximum uncertainty in re
weighing errors.
concentration (PB experiments, Table 1). For the single-
crystal solubility runs, starting materials were ultrapure
H2O and a polished fragment of natural Brazilian quartz
(Manning, 1994; Newton and Manning, 2008). Where
quartz solubility was higher than SiO2 mole fraction
>�0.1, use of a single quartz crystal was not feasible
(Newton and Manning, 2008). Instead, finely ground
quartz from the same source was used in multiple isother-
mal and isobaric phase-bracketing runs at different SiO2
O in (mg) Quartz in (mg) Quartz out (mg) X s

211 6.521 0.854 0.0609
634 6.091 0.741 0.0611
230 13.450 5.136 0.0933
023 14.908 � >0.1687
660 12.138 + <0.1793
730 29.859 1.5 + tr 0.3012
480 7.594 1.669 0.0732
644 8.958 + <0.1259
032 8.553 � >0.1135
209 18.237 � >0.2130
988 24.778 + <0.2525
80 31.241 � >0.4970
02 19.458 + <0.5485

artz-out column, numerical entries indicate the weight of a single
fine grained quartz, tr indicates a negligible amount of fine grained
ported SiO2 mole fraction ðX sÞ is 0.0001, based on propagation of



Fig. 2. Variation in quartz solubility in H2O as a function of
temperature. Solid curves show solubility isobars, based on the
thermodynamic model created from the data from this study,
Newton and Manning (2000, 2008), Manning (1994), and Nakam-
ura (1974). The 1r weighing errors from the present study are
smaller than the symbol size. Data points with visible error bars
reflect the midpoints of bracketing experiments, shown by the error
bars. The dash-dot curve is the a–b quartz inversion (Cohen and
Klement, 1967).
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concentrations to identify the quartz saturation composi-
tion. In both SC and PB experiments, starting materials
were sealed by arc-welding in a single, 1.5 cm-long Pt tube
(3.5 mm O.D., 0.15 mm wall thickness), with negligible loss
of H2O upon sealing (Newton and Manning, 2006, 2007;
Tropper and Manning, 2007a,b).

All experiments were carried out in a piston–cylinder
apparatus using 2.54 cm-diameter furnaces with graphite
heater sleeves and NaCl pressure medium (Manning and
Boettcher, 1994). The experiments were conducted in the
temperature range 900–1100 �C (±3 �C) and the pressure
range 15–20 kbar (±0.3 kbar). Temperature was measured
and controlled by type S thermocouples. No correction
was made for the effect of pressure on emf. Experiments
were quenched to <200 �C in less than 12 s by shutting off
the heating power. A Mettler M3 microbalance with a
reproducibility of ±2 lg (1rÞ was used to weigh quartz
crystals before and after SC experiments, as well as initial
and final H2O. Final H2O weight was measured by loss
upon drying, and was used solely as a check against water
loss during the experimental run. In PB experiments, due to
the high proportion of initial silica, a significant amount of
H2O becomes structurally bound in the vapor quench
phase, and the H2O weight after the experiment cannot
be measured by loss upon drying. Therefore, only initial
weights were recorded for PB experiments. Propagation
of weighing errors leads to a maximum error in silica mole
fraction ðX sÞ of 0.0001 (1rÞ. At a given P and T, PB exper-
iments were repeated until bracket width was X s � 0:05 to
sufficiently constrain the thermodynamic model. Only the
most tightly limiting experiments are reported.

3. RESULTS

Experimental results are given in Table 1 and Fig. 2.
Upon quenching and drying of the experimental charges,
soluble silica was identified in the run products as an amor-
phous, chalky or glassy matrix. Evidence of coexisting,
immiscible fluids such as the presence of large, discrete glass
spheres (e.g., Antignano and Manning, 2008) was not ob-
served, indicating that all runs were in the supercritical
SiO2–H2O region. Residual quartz in the phase bracketing
runs was distinguished from soluble silica in the run products
by its birefringence using optical microscopy. It occurred
as rounded, subhedral to euhedral crystals <100 lm in
diameter embedded in the chalky or glassy matrix. Quartz
crystals from SC experiments were found to be subhedral
to euhedral as well.

To determine the time required for equilibrium, experi-
ments were performed for 2.5 and 20 h at the lowest tem-
perature and pressure investigated (900 �C, 15 kbar). The
final quartz crystal was subhedral in the 2.5 h run, but euhe-
dral after the 20 h run; however, the two experiments show
negligible difference in solubility, suggesting that equilib-
rium is achieved within 2.5 h. Solubilities at <1050 �C,
15 kbar were found to be systematically higher than those
measured by Nakamura (1974) (Fig. 2). This may be be-
cause Nakamura’s short run times (�30 min) did not allow
the system to fully equilibrate below 1050 �C. In contrast,
agreement between the data from Nakamura (1974) and
the current study at 1050 �C imply that equilibrium is
achieved within �30 min at >1050 �C.

The new data indicate that below �1050 �C, quartz sol-
ubility at 15 and 20 kbar is significantly higher than at
10 kbar. For example, at 1000 �C, quartz solubility climbs
from 8.85 mol% at 10 kbar (Newton and Manning, 2008)
to 17.4 ± 0.53 mol% at 15 kbar and to 23.28 ± 1.98 mol%
at 20 kbar. In contrast, at 1050–1100 �C, quartz solubility
at both 15 and 20 kbar is lower than the solubility at
10 kbar, so that at 1100 �C, quartz solubility drops from
63.59 ± 3.36 mol% at 10 kbar (Newton and Manning,
2008) to 50.9 � 2.2 mol% at 15 (Nakamura, 1974) and
52.28 ± 2.58 mol% at 20 kbar (this study).

Our results are consistent with those of Newton and
Manning (2008). As P increases from 10 to 20 kbar, tan-
gents to the isobaric solubility curves become progressively
shallower at constant, �critical T of 1050–1080 �C (Fig. 2),
indicating that P is increasing in excess of an upper critical
end point. The intersection of the 15 and 20 kbar solubility
curves at �1100 �C suggests that the intersection of the 15
and 10 kbar solubility curves may occur at a lower concen-
tration of silica (and slightly lower T) than the intersection
of the 20 and 10 kbar solubility curves (Fig. 2). This has
important implications for near-critical solubility topology
(see below).

4. DISCUSSION

4.1. Modeling solubility and activity–concentration relations

The equation of Manning (1994) accurately describes
quartz solubility between 500 and 900 �C up to 10 kbar,
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and between 500 and 700 �C from 10 to 20 kbar. The mono-
mer + dimer model of Newton and Manning (2002, 2003)
describes silica activity in relatively dilute solutions
(<2 m). However, neither the equation of Manning (1994)
nor the activity model of Newton and Manning (2002,
2003) is applicable at the high silica concentrations reached
as P and T increase further. For example, the equation of
Manning (1994) under-predicts quartz solubility at 900 �C
between 10 and 20 kbar by �15–30%. In an attempt to
model silica activity–concentration relations in the high
concentration region near the upper critical end point,
Newton and Manning (2008) proposed a subregular solu-
tion to describe the isobaric, isothermal behavior of the
quartz-water system at 1080 �C and 10 kbar. An alternative
solution model must be employed to fully describe the sol-
ubility of quartz over a range of P and T.

Ideal, regular, and subregular mixing models are advan-
tageous for their numerical simplicity, but they are strictly
applicable to solutions of non-interacting to weakly inter-
acting particles. Without modification, they are not appro-
priate for solutions with components that interact strongly
to form chemical complexes. In the case of the SiO2–H2O
system specifically, a subregular solution cannot take into
account the strong chemical interaction in the fluid associ-
ated with oxygen exchange between free H2O, bridging O2�

in polymerized silicate species, and terminal OH� of silanol
groups, represented by

1
2
H2Oþ 1

2
O2�

br ¼ OH�tm ð1Þ

where the subscripts br and tm refer, respectively, to bridging
and terminal oxygen positions. Eq. (1) describes any aqueous
oxide polymerization or depolymerization reaction, such as
the dimer–monomer reaction H2Oþ Si2OðOHÞ6 ¼ 2SiðOHÞ4,
but on a single-oxygen basis. In principle, the SiO2–H2O sys-
tem could be described by a regular or subregular solution of
three components – H2O; O2�, and OH�, with a term added
to describe the additional free energy derived from creating
the OH� component, similar to the thermodynamics of liquid
alloys (e.g., Singh et al., 1993). However, the three-compo-
nent regular or subregular solution would require too many
parameters to fit the available data.

We therefore employed a subregular solution between
two components, SiO2 and H2O. We added an additional
term to the subregular solution in order to describe the
standard Gibbs free energy of the exchange of oxygen
between Si-bridging positions and free water positions to
hydroxyl positions; that is, OH� formation by depolymer-
ization via reaction 1 ðDG�1Þ. The standard state for SiO2

is taken to be unit activity of pure molten silica ðSiO2;liqÞ,
the standard state for quartz and H2O is unit activity of
the pure phase, and the standard state for bridging oxygens
and terminal hydroxyls is the hypothetical unit mole frac-
tion solution of the species referred to infinite dilution.
We assume that the free energy of the formation of one
OH� group is independent of the total concentration of
OH� groups formed ðX OH�Þ; that is, the Gibbs free energy
of each new OH� is additive. Assuming that all non-ideality
is accounted for by the two-component interchange ener-
gies, the activity of each species in Eq. (1) is equal to its
mole fraction, which leads to
X OH�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X H2OX O2�

p ¼ K1 ¼ exp
�DG�1

RT

� �
ð2Þ

where K1 is the equilibrium constant for Eq. (1). At a given
P, T, and silica mole fraction ðX sÞ, the total and excess free
energy of mixing (DGmix and DGex, respectively) of SiO2

and H2O are given by:

DGmix ¼ RT ½X s lnðX sÞ þ ð1� X sÞlnð1� X sÞ� þ DGex ð3Þ
DGex ¼ X sð1� X sÞðW sð1� X sÞ þ W hX sÞ � X OH� � DG�1 ð4Þ

where Ws and Wh are interchange energies for SiO2;liq and
H2O, respectively. Because each unit of SiO2 contains two
oxygen atoms, and mass balance requires that each hydro-
xyl group created needs 1

2
H2O and 1

2
O2�, the total number of

oxygen atoms in the system, normalized by the sum of the
moles of H2O and SiO2 in the system, is given by 1þ X s, the
number of bridging oxygens present ðX O2�Þ is given by
2X s � 1

2
X OH� , and the number of free water molecules

ðX H2OÞ is given by 1� X s � 1
2
X OH� . Thus, at a given X s,

these three equations have three independent variables:
W s; W h, and DG�1, as X OH� can be calculated directly from
Eq. (2) (see Appendix A).

The equations were solved by recognizing that, given the
full expression for the Gibbs free energy of mixing in a bin-
ary SiO2–H2O fluid, the solubility of quartz at any given P

and T is defined by a mechanical mixing line in G–X s space
between DG�quartz and the composition in a mixed SiO2–H2O
fluid that possesses the lowest DG in the presence of quartz.
This composition can be found by numerically solving the
equation of the following straight line in G–X s space

ð1� X sÞ
@DGmix

@X s

����
X s

þ DGmixjX s
þ DG�Q–L ¼ 0 ð5Þ

for X s subject to the condition that DGmix between X s and 1
is greater than the linear combination of DGmixjX s

and
DG�Q–L, where DG�Q–L denotes the standard Gibbs free en-
ergy of metastable melting of quartz, given by the
approximation

DG�Q–L ¼ ðT melt � T ÞDS�Q–L ð6Þ

where T melt is the temperature of dry quartz melting from
Jackson (1976), and DS�Q–L is taken to be 5.53 J/mol K
(Richet et al., 1982), independent of P. It should be noted
that correction of a numerical error of Newton and Man-
ning (2008) means that use of this value of DS�Q–L and a
metastable melting point of 1427 �C at one bar (Richet
et al., 1982) does not produce the implausible �100% vol-
ume of melting noted by Newton and Manning (2008),
but rather �10% (0.2 J/bar), a far more reasonable value.
The activities of silica and water in the fluid (respectively,
as;l and ah) can be computed from the modified subregular
solution model, where

RT ln as;l ¼ RT ln X s þ ð1� X sÞ2ðW s þ 2X sðW h � W sÞÞ

� DG�1 X OH� þ ð1� X sÞ
@X OH�

@X s

� �
ð7Þ

RT ln ah ¼RT lnð1� X sÞ þ X 2
s ðW h þ 2ð1� X sÞðW s � W hÞÞ

� DG�1 X OH� � X s
@X OH�

@X s

� �
ð8Þ
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The activity of silica at quartz saturation ðaQ
s;lÞ can also be

calculated from the depression of the melting point of
quartz by H2O (Newton and Manning, 2008), where

RT ln aQ
s;l ¼ �DG�Q–L ¼ ðT � T meltÞDS�Q–L ð9Þ

Activities calculated in this way are identical to activities
calculated by the modified subregular solution model using
model-derived solubilities. In other words, equating the
right hand sides of Eqs. (7) and (9) leads to an expression
that can be used to calculate X s at quartz saturation (see
Appendix A). This expression is algebraically equivalent
to Eq. (5) when Eqs. (3) and (4) are substituted in Eq. (5)
for DGmix and the appropriate derivative is taken, recogniz-
ing that X OH� is a function of X s. The mixing parameters
and DG�1 can therefore be obtained by regression of exper-
imentally obtained quartz solubility data ((Manning,
1994; Newton and Manning, 2000, 2003, 2008; Nakamura,
1974) (>1050 �C only); this study).

Non-linear least squares regression of these data with
added interpolated points, gave:

DG�1 ¼ 22070� 19:08T � 1:3168p þ 2:2987� 10�5P 2

þ 5:4464� 10�5T 2 þ 18:990� 10�3PT ð10Þ

W s ¼ 92631� 24:585T � 4:9086P þ 9:1719� 10�5P 2 ð11Þ
W h ¼ 110740� 65:569T � 1:1141P ð12Þ

where T is in K, P is in bars, and energies are in Joules.
The average absolute error between solubilities calculated
by the model using these coefficients and experimental
data is 3.8%, and the standard deviation of the error is
5.3% (1rÞ. Fig. 3 shows model errors as functions of P,
T, and X s. All but three data points are within 10% of
the experimental value and 70% of the data points are
within 5% of the experimental value. The resulting fit pos-
sesses thirteen independent parameters, nine of which are
constant or linear in P or T. Considering that Manning
(1994) and Dolejs and Manning (2010) required seven
independent parameters to describe quartz solubility at
lower P and T, it is encouraging that only six additional
parameters are required to describe highly non-linear
quartz solubility, including critical phenomena, over a lar-
ger PT region.

The current model is applicable only between tempera-
tures of 500 �C and the dry melting point of quartz at pres-
sures between 5 and 20 kbar. It does not accurately capture
the observed linear correlation of quartz solubility with the
density of water (Manning, 1994) at lower P and T. This
behavior is most likely due to the strong non-ideality of
the SiO2–H2O system at low P and T.

Model quartz-solubility values are shown in Fig. 4. The
solubility isopleths broadly follow the schematic topology
developed by Hack et al. (2007a,b); however, our isopleths
show a slight curvature between 1050–1100 �C above
10 kbar, indicating that a local solubility minimum exists
at �15 kbar between 1065 and 1100 �C. This is a reflection
of the experimental observation above that the intersection
of the 15 and 20 kbar solubility curves occurs at �1100 �C,
while the intersection of each of those curves with the
10 kbar solubility curve occurs at a lower T and silica
concentration. While this may seem counterintuitive, there
is no a priori reason that isobaric solubility curves must
intersect at the same temperature and composition. Given
the uncertainties in the experimental measurements at
1100 �C, the size of this local solubility minimum in PTX

space has a large uncertainty. However, given the experi-
mental difficulties at such high quartz/water ratios, it is un-
likely that a reasonable number of experiments will provide
the precision necessary to determine the true nature of the
relationship between the 10, 15, and 20 kbar solubility
curves between 1065 and 1100 �C.

The predicted trace of the critical curve, defined as
the locus of points in PT space above which (in either T

or P) no stable or metastable fluid immiscibility exists
(Fig. 4), is much steeper than that of Hack et al.
(2007a,b); the model critical temperature at �5–10 kbar
pressure is therefore much lower than is estimated from
topology. It is important to emphasize that the location
of the critical curve is not directly constrained by experi-
mental data.

Fig. 5 shows phase relations in four isobaric sections at
various pressures. The model clearly captures the topologi-
cal change from a stable miscibility gap in the subcritical re-
gion to the intersection of the crest of the miscibility gap
(the critical temperature) with the solubility curve, which
forms an upper critical end point on the hydrothermal melt-
ing curve, and the increasing metastability of the miscibility
gap with rising pressure across the full binary. Experimental
quartz solubilities are accurately reproduced; however, the
model predicts a more H2O-rich melt composition at
5 kbar, 1100 �C than was inferred by Kennedy et al. (see
Section 4.3).

Fig. 6 shows the polythermal activity of silica and
water at 10 kbar and the quartz saturation temperature
from 500 to 1840 �C, in addition to the silica activities
in undersaturated solutions at various temperatures.
Allowing the parameters of the modified subregular solu-
tion vary with T yields nearly constant activity of silica
at quartz saturation over a larger range of silica concen-
tration (Fig. 6) than an isothermal subregular solution
(Newton and Manning, 2008). It is significant that silica
activity initially rises rapidly with increasing T at quartz
saturation and then levels off to stay nearly constant. By
using a dry silica melt as the standard state, the silica
activity at quartz saturation is dependent solely on T

(Eq. (9)). Therefore, the non-ideality of the activity curve
in Fig. 6 is entirely due to the concentration of silica in the
fluid at quartz saturation. At low T, silica concentration is
low relative to silica activity, and the dissolved silica is lar-
gely monomeric. As T increases, an increasing amount of
silica can be dissolved, most likely as more polymerized
species, which lowers the slope of the activity curve and
turns it horizontal as a very large amount of silica is dis-
solved over a small temperature range. This is supported
by recent work in hydrothermal diamond anvil cells,
which point to a rapid increase in the oligomer/monomer
abundance ratio as either T increases at quartz saturation
near 800 �C (Mysen, 2010a), or simply as the total concen-
tration of silica in solution is increased at the same T

(Hunt et al., 2011).



Fig. 3. Model agreement with experiment expressed as % error ð100ðX model � X expÞ=X expÞ as a function of pressure, temperature, and
experimentally determined composition.

Fig. 4. Model variation in quartz solubility in H2O as a function of temperature and pressure. Bold curves are the wet and dry melting curves
of quartz. The dry melting curve is calculated from Jackson (1976), and the wet melting curve is calculated from the model of the present
study. The bold dashed curve is the critical curve, stable above the wet melting temperature, and metastable below the wet melting
temperature. The intersection of the wet melting curve with the critical curve defines the upper critical end point, determined by the model to
be located at 9330 bars and 1067 �C. The lighter solid curves are contours of quartz solubility in mole fraction.
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4.2. Hydration state of silica

Because the modified subregular solution model includes
an explicit calculation of X OH� , it is possible to predict an
average state of hydration ðX OH�=X sÞ of solutions at any gi-
ven composition, P, and T. In this formulation, if
X OH�=X s ¼ 4, then the solution is composed entirely of
silica monomers, because each four-coordinated Si atom
will be bonded to four terminal OH� groups. Monomeric
silica is also denoted as Q0, because it is not bonded to
other Si atoms through bridging oxygens. Similarly,
X OH�=X s ¼ 3 corresponds to an average state of hydration
equivalent to that of the dimer ðQ1Þ, X OH�=X s ¼ 2 corre-
sponds to rings and infinite chains ðQ2Þ, X OH�=X s ¼ 1



Fig. 5. Selected isobaric sections of quartz solubility and phase relations as a function of temperature and composition. Below the critical end
point pressure (a), a stable miscibility gap exists between aqueous fluid and silicate melt. The intersection of the solubility curve with the
miscibility gap defines the hydrous melting temperature. Below this temperature, the miscibility gap is metastable. At the critical end point
pressure (b), the miscibility gap intersects the solubility curve at only one point, defining the critical end point composition where the solubility
curve has a horizontal tangent. Just above the critical end point pressure (c), the miscibility gap is entirely metastable, and far above the
critical end point pressure (d), the slope of the solubility curve increases so that the increase in solubility with increasing T is more gradual
than at or near the critical end point pressure. Data points are experimental points from Manning (1994), Newton and Manning (2000, 2008),
Kennedy et al. (1962), and this study.
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to cages ðQ3Þ, and X OH�=X s ¼ 0 to dry silica melt ðQ4Þ.
In this Q notation, Eq. (1) would be expressed as
1
2
H2OþQn ¼ Qn�1.

The most important control on aqueous silica polymer-
ization is the concentration of aqueous silica. Fig. 7 shows
the partitioning of oxygen between H2O; OH�, and O2�

and the average hydration state of aqueous silica at 10 kbar
and 1080 �C as a function of composition, which is repre-
sented by the number of oxygens provided by the water
component divided by the total number of oxygens in the
system. This representation of composition has the advan-
tage of being independent of the number of oxygens per for-
mula unit of silicate, which eases comparison of different
systems (e.g., Stolper, 1982). While the most dilute solu-
tions are predominantly monomeric, the average state of
hydration drops to 1 as quartz saturation ð�50 mol%) is
reached. Newton and Manning (2008) determined that at
quartz saturation at 10 kbar and 1080 �C, nearly 80% of
the silica in solution is contained in “higher oligomers”, de-
fined as any silica species more highly polymerized than the
dimer. If the present model and the model of Newton and
Manning (2008) are both correct, the higher oligomers have
an average state of hydration of 0.25, corresponding to a
slightly hydrated melt. The structure of this fluid may in
fact be similar to that of colloidal silica (e.g., Iler, 1979),
with suspended, dry amorphous or molten silica sur-
rounded by a hydrated layer in equilibrium with silica
monomers and small oligomers. Assuming a dry amor-
phous or liquid silica density of 2.2–2.4, and that on aver-
age, surface tetrahedra are Q3 species while interior
tetrahedra are Q4 species, an X OH�=X s ratio of 0.25 is equiv-
alent to silica colloids of approximately 8–9 nm diameter.



Fig. 6. Activity–concentration relations of SiO2 and H2O components in a quartz saturated aqueous fluid at 10 kbar, from 500 �C to the
melting point of quartz. Filled squares are data points from Manning (1994) and Newton and Manning (2000, 2002, 2008), with activities
calculated from the depression of the melting point of quartz in the presence of H2O. The thin solid lines represent ideal mixing, while the solid
curves show the model-derived activities of SiO2 and H2O. Because this diagram is polythermal with a minimum temperature of 500 �C, the
activities for silica and water are not calculated at compositions less than the quartz saturation composition at 500 �C.

Fig. 7. (a) Partitioning of oxygen between H2O, OH�, and O2� and (b) average state of hydration of solute silica (NOH�=X s ratio) as a
function of composition at 10 kbar and 1080 �C. Composition is represented by the number of oxygens provided by the water component
divided by the total number of oxygens in the system ðX H2O=X H2O þ 2X SiO2

Þ. The solid vertical lines show the quartz saturation composition at
10 kbar and 1080 �C, above which the partitioning and average state of hydration are metastable (shown by dashed lines), as well as the
maximum quartz solubility (�2 m, 0.034 mole fraction) that can be described by the monomer–dimer model of Newton and Manning (2002,
2003). The thin dashed line shows the average state of hydration of solute silica using the equilibrium constant determined by Stolper (1982).
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This size may grow if, in addition to the equilibrium with
monomers and dimers, equilibrium with Q2 and small Q3

species (rings, chains, and cages) is considered, due to the
additional hydroxyl groups on these species that would
not be available to create additional colloidal surface
hydroxyls.
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The calculated speciation of water as a function of com-
position (e.g., Fig. 7a) does not agree with experimental
studies of water in quenched silicate glasses (e.g., Stolper,
1982). If the equilibrium constant determined by Stolper
(1982) ðK2

1 = 0.2) were accurate for the system SiO2–H2O
regardless of P or T, the average state of hydration of an
aqueous silica solute in a solution at 2 m SiO2 should be
roughly 2 (Fig. 7b). Given that a solution at 2 m SiO2 can
be modeled as a collection of monomers and dimers
(Newton and Manning, 2003, 2008), an average hydration
state of 2 seems highly unlikely. However, when experi-
ments were done on near-albitic wet glasses in situ (Shen
and Keppler, 1995), much closer agreement is obtained.
In fact, at 1080 �C and 10 kbar, the equilibrium constant
obtained by Shen and Keppler is identical to that of the
present model. Unfortunately, the assumptions contained
in the model of Shen and Keppler – a linear variation of
ln(K) with 1/T and a three-component ideal mixing model
of H2O; OH�, and O2� – cannot adequately describe the
available quartz solubility data at 10 kbar. It is not clear
if Na2O–Al2O3–SiO2–H2O experiments are applicable to
the SiO2–H2O system. The presence of alkali and aluminum
ions may affect the formation of hydroxyl groups (Burnham
and Davis, 1974; Mysen, 2010b), and therefore the general
agreement between the model in the present study and
experiments on near-albitic glasses may be in part fortu-
itous. It is clear, however, that K1 varies with both temper-
ature and pressure.

Fig. 8 shows a contour plot of the average hydration
state of silica in an aqueous fluid in equilibrium with
quartz. In general, increasing P at constant T along the
quartz saturation surface will depolymerize the aqueous sil-
ica, increasing its average hydration state, though in certain
regions (1000–1080 �C), quartz solubility increases rapidly
enough with increasing P that the aqueous silica becomes
more polymerized as P increases along the quartz satura-
tion surface (Fig. 8). Increasing T along the quartz satura-
tion surface always causes aqueous silica to polymerize;
however, this is chiefly a consequence of the rapidly increas-
ing concentration with rising T (Fig. 8). At a constant pres-
sure and concentration, increasing T may lead to
polymerization or depolymerization of aqueous silica,
depending on the location in PTX space. Increasing P at
a constant temperature and concentration, however, always
causes depolymerization of aqueous silica.

The present model only provides an average hydration
state for total dissolved silica. It is not possible to quantify
abundances of individual Q0 through Q4 species. However,
it should be noted that the monomer–dimer model of
Newton and Manning (2002, 2003) is applicable to quartz
saturated (or undersaturated) solutions with less than
�2 m silica, and the proportion of monomers, dimers,
and higher polymers can be determined using the excess ap-
proach of Newton and Manning (2008). While polymeriza-
tion (or average state of hydration) of silica as a function of
composition will change as PT conditions change, our mod-
el generally predicts an average state of hydration between
3 and 4 for such dilute solutions (Fig. 7b). We do not nec-
essarily conclude that these solutions are comprised entirely
of monomers and dimers – it seems likely that there will be
additional oligomers present, given the range of oligomers
seen in relatively dilute alkaline silica solutions at ambient
conditions (Knight et al., 2007) – but they could be energet-
ically modeled as if they were comprised entirely of mono-
mers and dimers.

Although it is not possible to quantify exact populations
of the five categories of silica polymers with the present
model, we can determine the minimum and maximum
amount of polymerization at a given SiO2 concentration.
If all hydroxyl groups reside in monomers, then any
remaining dissolved silica must be fully polymerized. Alter-
natively, if all bridging oxygens predicted by the model re-
side in dimers, any remaining dissolved silica must be
monomeric. At 10 kbar and 1080 �C, for example, at least
15% and at most 60% of the silica must be polymerized at
2 m SiO2. Clearly, however, both are unrealistic scenarios.
In the former, the 15% polymerized silica would be entirely
dissolved, yet completely dry, silica melt, which is highly
unlikely. The latter scenario implies that 60% of the silica
would be in dimers without a single further condensation
reaction. While this is physically possible if it is assumed
that only monomers and dimers can exist in solution, it is
also highly unlikely. As SiO2 concentration increases fur-
ther, more bridging oxygens exist in solution than can pos-
sibly be accommodated in dimers, indicating that higher
polymers must exist. The actual amount of polymerization
(i.e., non-monomeric silica) is likely to be in between
these extremes. This range is in good agreement with previ-
ous estimates of total silica polymerization (Newton and
Manning, 2002, 2003, 2008; Gerya et al., 2005).

We have not considered the effects of hydrogen-bonded
water to silica oligomers, if any; the hydration state of silica
in this work is solely due to water reacting to form OH�

groups. At these high temperatures, it seems unlikely that
there is much energetic difference between hydrogen-bonded
and free water (e.g., Frantz et al., 1993, 1995, 2010a).

4.3. Subcritical phenomena

Although data along the wet melting curve (Kennedy
et al., 1962) were not used in the model regression, the mod-
el predicts a wet melting temperature between 5 and 9 kbar
of �1066–1070 �C, and an upper critical end point at
1067 �C and 9.33 kbar (Fig. 4). The agreement with data
from Kennedy et al. (1962) is significantly poorer than the
agreement with the other data sets (Fig. 5); however,
attempting to include the data from Kennedy et al. (1962)
in the model regression led to unacceptable errors in fits
to the other data sets. There is large experimental uncer-
tainty in the Kennedy et al. (1962) data. At 1050 �C,
Kennedy et al. (1962) determined quartz solubility to be
21 mol% silica at 9 kbar, and Newton and Manning
(2008) determined quartz solubility to be 20 mol% at
10 kbar. Because of the topology of the isobaric solubility
curves (Fig. 2), it is highly unlikely that quartz solubility
would decrease or even stay constant when increasing P

from 9 to 10 kbar at 1050 �C. In light of these uncertainties,
we consider the model wet melting temperature and
upper critical end point to be in reasonable agreement with
Kennedy et al. (1962).



Fig. 8. Average state of hydration (NOH�=X s ratio) of solute silica at quartz saturation as a function of pressure and temperature. Bold curves
are the same as in Fig. 4. The lighter solid curves are contours of constant average state of hydration, where 4 corresponds to entirely
monomeric silica, and 0 corresponds to fully polymerized dry silica melt.
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Little work has been done to determine water solubility
in pure silica melts at pressures below the upper critical end
point; our model is therefore mostly calibrated on the H2O-
rich side of the system. However, there is one data point
(Holtz et al., 2000) within the applicable pressure and tem-
perature ranges of our model that can be compared. At
1200 �C and 6 kbar, Holtz et al. (2000) determined water
solubility to be approximately 22.5 mol%, while our model
predicts water solubility to be 18.4 mol%. We consider these
values to be in good agreement, especially in light of the
fact that no subcritical, silica-rich data were used in the
regression analysis.

4.4. Thermodynamic derivatives

The stable or metastable dissolution of silica liquid in
SiO2–H2O solutions can be expressed as

SiO2ðliqÞ ¼ SiO2ðliq;solnÞ ð13Þ

With our adopted standard state for aqueous silica of unit
mole fraction of dry liquid SiO2, the equilibrium constant
of Eq. (13) may be expressed as the activity of aqueous sil-
ica at a given P, T, and X s, given by Eq. (7). The partial mo-
lar entropy and volume of reaction (13) can thus be derived
via the following equations:

� R
@T lnðas;lÞ

@T

� �
P ;X s

¼ DS13 ð14Þ

RT
@ lnðas;lÞ

@P

� �
T ;X s

¼ DV 13 ð15Þ
The reaction from quartz to aqueous silica is given by

SiO2ðqtzÞ ¼ SiO2ðliq;solnÞ ð16Þ

The standard Gibbs free energy of Eq. (6) can be expressed
as the sum of dry quartz melting (Eq. (6)), and the standard
Gibbs free energy of Eq. (13). The molar entropy and vol-
ume of dry quartz melting can be obtained by differentiat-
ing Eq. (6) with T and P respectively, giving DS�Q–L ¼
5:53 J/K (a trivial result, as this value was previously as-
sumed as the entropy of quartz melting) and DV �Q–L ¼

dT melt

dP

� 	
DS�Q–L J/bar. The standard molar entropy of reaction

16 (Fig. 9) is therefore given by the sum of Eq. (14) and
DS�Q–L. The standard molar volume of reaction 16
(Fig. 10) is likewise given by the sum of Eq. (15) and
DV �Q–L. The standard partial molar volume and entropy
of aqueous silica at the P and T of interest is given by sim-
ply adding the standard molar volume or entropy of reac-
tion (16) to the standard molar volume or entropy of
quartz, which can be readily obtained using a thermody-
namic database such as Holland and Powell (1998).

Of particular note in Fig. 10 is the contour correspond-
ing to DV 16 ¼ 0. At T lower than this contour, the volume
change of the reaction is negative, and at T above this con-
tour, the volume change is positive. This provides a conve-
nient division of supercritical aqueous silicate – at
temperatures below the DV 16 ¼ 0 contour, SiO2 volume de-
creases as it is transferred from quartz to aqueous silica,
while above those temperatures, SiO2 volume increases as
it is transferred from quartz to a hydrous silicate melt. This
contour may therefore represent a better “extension” of the



Fig. 9. Standard molar entropy of reaction 16 as a function of pressure and temperature. Bold curves are the same as in Fig. 4. The lighter
solid curves are contours of constant standard molar entropy of reaction 16 in J/K. The increase in partial molar entropy at high P and low T

is most likely due to increased depolymerization (NOH�=X s ratio) at these conditions.
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hydrous melting curve than the contour corresponding to
the critical composition advocated by Hack et al. (2007a,b).
Fig. 10. Standard molar volume of reaction 16 as a function of pressure
solid curves are contours of constant standard molar volume of reaction
molar volume of reaction 16.
The molar volume (and therefore, density) and entropy
of an aqueous fluid in equilibrium with quartz is obtained
and temperature. Bold curves are the same as in Fig. 4. The lighter
16 in J/bar. The thin bolded curve is the contour of zero standard



Fig. 11. (a) Molar volume change between X sSiO2;qtz þ ð1� X sÞH2O and the fluid in equilibrium with quartz, where Xs is the quartz
saturation composition, as a function of pressure and temperature, in J/bar. (b) Molar volume of fluid in equilibrium with quartz as a function
of pressure and temperature, in J/bar. (c) Density of fluid in equilibrium with quartz and density of pure water as a function of pressure and
temperature, in g/cm3. Bold curves in all contour plots are the same as in Fig. 4.
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Fig. 12. (a) Molar entropy change between X sSiO2;qtz þ ð1� X sÞH2O and the fluid in equilibrium with quartz, where X s is the quartz
saturation composition, and (b) Molar entropy of fluid in equilibrium with quartz as a function of pressure and temperature, in J/K. Bold
curves are the same as in Fig. 4.
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by performing a similar analysis of the activity of water,
and then weighting each partial molar quantity by the
quartz saturation composition. It should be noted here that
while a comparison could be made between the model par-
tial molar volume of water and experimental measurements
of the partial molar volume in silicate glasses (Richet and
Polian, 1998), it would not be a direct comparison, as the
experimental measurement was only done on quenched
glasses at ambient conditions. The present model reports
partial molar volumes of water that are both more and less
dense than the experimentally measured value of 1.2 J/bar,
depending on the pressure and temperature. Fig. 11 shows
(a) the difference in volume between quartz + pure water
and a hydrous silicate fluid, (b) the molar volume of a fluid
in equilibrium with quartz, and (c) the density of a fluid in
equilibrium with quartz, compared to the density of pure
water. The contour corresponding to DV ¼ 0 in Fig. 11a
shows that, in a system assumed to be isochoric (e.g., a
diamond anvil cell), as temperature is increased from ambi-
ent T to this contour, the pressure will increase slightly less
than it would under the assumption that the fluid volume is
equal to the sum of the volumes of water and quartz.
Fig. 12 shows (a) the total change in entropy from
quartz + pure water to a hydrous silicate fluid, which natu-
rally (due to the maximum of ideal mixing entropy at
X = 0.5) rises to a maximum for intermediate fluids, and
(b) the molar entropy of a fluid in equilibrium with quartz.

Once the molar volume and entropy of the fluid phase in
equilibrium with quartz are known, thermodynamic second
derivatives can be computed. Fig. 13 shows (a) the thermal
expansion parameter, a, (b) the isothermal compressibility
b, and (c) the isobaric heat capacity, CP, of a fluid in equi-
librium with quartz as well as for pure water as a function
of temperature and pressure. It should be noted that these
derivatives depend heavily on the volume and entropy of
quartz as calculated from the Holland and Powell (1998)



Fig. 13. (a) Coefficient of thermal expansion, a� 105 (1/K), (b) the isothermal compressibility b� 105 (1/bar), and (c) the isobaric heat
capacity, CP (J/K), of a fluid in equilibrium with quartz (solid lines) and pure water (dashed lines) as a function of temperature and pressure.
Bold curves are the same as in Fig. 4.
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data set (2002 update), and therefore care must be taken to
correct for the entropy and volume increase of the
transition from a to b quartz. Fig. 13 has been corrected
in this manner; without the correction, a discontinuity in
the contour lines would exist at the a–b quartz transition
(Fig. 1). This dependence on the Holland and Powell
(1998) data set (2002 update) is also the reason for the neg-
ative coefficient of thermal expansion above �1900 �C and
�15 kbar (Fig. 13a). This phenomenon is well known for
quartz at these conditions, but it is unclear if molten silica
exhibits the same behavior, or if Eq. (6) needs to be refined
to reflect more accurately the properties of molten silica.

The comparison between the properties of a fluid in
equilibrium with quartz and pure H2O in Figs. 11c and
13 shows that the assumption that natural fluids at high
T and P can be approximated by the properties of pure
H2O can lead to significant error. This is supported by a re-
cent investigation of aqueous silicate fluids using indepen-
dent pressure calibration in the diamond anvil cell by
Mysen (2010a). The properties of natural fluids will deviate
significantly at high T and P from the properties of pure
H2O, with the deviation increasing as the amount of total
dissolved solids increases in the supercritical region.

4.5. Limitations

As mentioned previously, while this model gives an aver-
age hydration state of solute silica, it cannot predict popu-
lations of the five major categories of silica polymers. The
parameters describing the Gibbs free energy of the depoly-
merization reaction should change if the model describing
the weak interactions changes (e.g., using a regular or sub-
regular solution of three components, rather than a subreg-
ular solution of two components). Thus while this model
describes silica solubility quite well over a large PT range,
the average state of hydration of solute silica is merely a
prediction, and may change slightly as the model is refined
and/or extended to lower or higher pressures and lower
temperatures.

Another limitation is that there is no guarantee that the
least-squares regression gives a unique solution; the error
surface is highly irregular, and the choice of initial guesses
for each of the parameters is very important. It may be pos-
sible to use existing algorithms to find a global error mini-
mum over all thirteen parameters, if a robust forward
model to calculate an accurate solubility given a set of
parameters, pressure, and temperature can be developed.
The procedure to calculate quartz solubility given a set of
parameters, pressure, and temperature is given in Appendix
A, but verification that the calculated solubility is correct
(for example, verifying that the calculated solubility lies
outside of a miscibility gap) has so far been done solely
by inspection.

The metastable free energy of melting of quartz is as-
sumed to be given by a very simple expression (Eq. (6)).
This cannot be a perfectly valid assumption over the entire
PT range considered in this paper, as there is a Gibbs free
energy change associated with the transition from a to b
quartz. Refining Eq. (6), either to account for this transition
or to incorporate a generally more sophisticated expression
for the standard Gibbs free energy of dry molten silica, may
change the model considerably.

5. CONCLUSIONS

The new experimental quartz solubility results provide
accurate determinations of the 15 and 20 kbar isobars of
quartz saturation. These data, in conjunction with previ-
ously determined quartz solubility data sets, constrain a
modified subregular solution model that describes quartz
solubility, melting behavior and critical phenomena in
addition to making predictions of activity–concentration
relations and speciation over a large PT range. The model
suggests that speciation of aqueous silica can be thought of
in the same way that speciation of water in silicate melts is;
as a mixture of free H2O, terminal OH� groups, and bridg-
ing oxygens ðO2�Þ. Modeled oxygen speciation in the
SiO2–H2O system is in general agreement with in situ mea-
surements of oxygen speciation in near-albitic glasses, and
estimates of silica polymerization are in general agreement
with previous studies. The current model could be tested
and/or refined with additional experimentation, including
accurate determination of quartz solubility at P < 5 kbar
and T > 900 �C, and along the hydrothermal melting curve.
In situ measurement of oxygen speciation in pure
SiO2–H2O glasses would be even better, as it would allow
a single component of the model DG�1 to be tested and fit-
ted, putting further constraints on the remainder of the
mixing model. This last, however, may be difficult to
achieve, given the high melting temperature of hydrous
SiO2 (especially compared to the melting temperature of
hydrous albite) and temperature limits in externally heated
diamond anvil cells.
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APPENDIX A

The calculation of quartz solubility given a P and T of
interest must be done numerically, as there is no closed-
form solution to Eq. (5), text. Combining Eqs. (7) and
(9), text, so that RT ln aQ

s;l ¼ RT ln as;l, we obtain

ðT �T meltÞDS�Q–L¼RT lnX sþð1�X sÞ2ðW sþ2X sðW h�W sÞÞ

�DG�1 X OH� þð1�X sÞ
@X OH�

@X s

� �
ðA1Þ

where T melt is obtained from Jackson (1976), DS�Q–L is a con-
stant 5.53 J/K, DG�1; W s, and W h are given by Eqs. (10)–
(12), text, respectively, and X OH� and @X OH�

@X s
are given as

follows:
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K2
1

r ðA3Þ

where K1, as per Eq. (2), text, is given by

K1 ¼ exp
�DG�1

RT

� �
ðA4Þ

Eq. (A2) is simply the solution of Eq. (2), text, for X OH� ,
and Eq. (A3) is the derivative of Eq. (A2) with respect to
X s. If K1 happens to equal 2 (it never does, in this model,
but we include it here for completeness), X OH� and @X OH�

@X s

are given by

X OH� ¼
4ð1� X sÞðX sÞ
ð1þ X sÞ

ðA5Þ

@X OH�

@X s

¼ �4ðX 2
s þ 2X s � 1Þ
ð1þ X sÞ2

ðA6Þ

A simple numerical solver will accurately solve Eq. (A1) for
X s. However, care must be taken in the subcritical region
(T < 1070 �C or P < 9330 bar), as a stable or metastable
miscibility gap will exist and therefore more than one value
for X s will satisfy Eq. (A1). The miscibility gap between
compositions X 1 and X 2 can be determined by solving,
numerically and simultaneously, the following equations
for X 1 and X 2 (where X 1– X 2Þ:
RT ln X 1 þ ð1� X 1Þ2ðW s þ 2X 1ðW h � W sÞÞ

� DG�1 X OH� jX 1
þ ð1� X 1Þ

@X OH�

@X s

����
X 1

" #

¼ RT ln X 2 þ ð1� X 2Þ2ðW s þ 2X 2ðW h � W sÞÞ

� DG�1 X OH� jX 2
þ ð1� X 2Þ

@X OH�

@X s

����
X 2

" #
ðA7Þ

RT lnð1�X 1ÞþX 2
1ðW hþ2ð1�X 1ÞðW s�W hÞÞ

�DG�1 X OH� jX 1
�X 1

@X OH�

@X s

����
X 1

" #

¼RT lnð1�X 2ÞþX 2
2ðW hþ2ð1�X 2ÞðW s�W hÞÞ

�DG�1 X OH� jX 2
�X 2

@X OH�

@X s

����
X 2

" #
ðA8Þ

Eqs. (A7) and (A8) simply equate the activity of silica (Eq.
(7), text) at X 1 and X 2, and water (Eq. (8), text) at X 1 and
X 2, respectively. The true solubility will be the greatest pos-
sible value for X s outside this miscibility gap, unless each
side of Eq. (A7) is also equal to RT ln aQ

s;l, which defines
the hydrous melting temperature of quartz and the compo-
sitions of the two fluids in equilibrium with quartz at the
melting temperature.
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