
1 AQUEOUS SILICA POLYMERIZATION IN 
PURE H2O 

Silica polymers have long been recognized in aque-
ous solutions at low P and T. Early studies demon-
strated their stability at high concentration in basic 
solutions or at strong quartz oversaturation (e.g. 
Lagerstrom 1959; Ingri 1959; Weill & Bottinga 
1970; Busey & Mesmer 1977; Crerar et al. 1981; 
Cary et al. 1982; Alvarez & Sparks 1985). Neverthe-
less, thermodynamic analyses typically assumed that 
these complexes were not significant in equilibrium 
quartz-saturated H2O at near-neutral pH because of 
lower aqueous silica concentration (e.g. Walther & 
Helgeson 1977). However, the concentration of 
aqueous silica in quartz-saturated H2O increases 
dramatically with increasing P and T (Anderson & 
Burnham 1965; Manning 1994). Recent experimen-
tal studies show that this solubility enhancement is 
accompanied by increased extent of polymerization. 
Silica concentrations in equilibrium with quartz-
undersaturated mineral assemblages at near-neutral 
pH are lower than predicted if monomers are the 
only silica species (Zhang & Frantz 2000; Newton & 
Manning 2002) and Raman spectroscopy of high-P-
T quartz-saturated H2O yields direct evidence for sil-
ica dimers (Zotov & Keppler 2000, 2002). 

The identification of aqueous silica dimers is con-
sistent with our knowledge of the structure and 
phase relations of hydrous silicate melts. In many 
silicate-H2O systems at elevated P, the H2O-
saturated melt and the melt-saturated aqueous phase 
approach each other in composition with isobarically 
increasing T. The compositional difference between 
the two disappears along a critical curve, above 
which there is a single fluid whose composition var-
ies without phase change from pure H2O to rela-
tively H2O-poor, hydrous melt on the liquidus. In the 
system SiO2-H2O, the structure of supercritical hy-
drous SiO2 melt is strongly polymerized at <10 wt% 
H2O, such that bridging-oxygen rich species – Q3 
(Si2O5

2-) and Q4 (SiO2) – predominate (Farnan et al. 
1987). Thus, in the supercritical region, an increase 
in SiO2 concentration relative to H2O is accommo-
dated by the progressive increase in the abundance 
of Si-O-Si bonding; i.e. polymerization. The system 
SiO2-H2O has a second critical end point at ~10 kbar 
and 1060 °C (Kennedy et al. 1962). The compara-
tively low P and T of this feature indicate that there 
should be significant capacity for silica polymeriza-
tion in fluids at geologically accessible conditions. 

The significant equilibrium concentration of sil-
ica dimers in H2O-rich solutions well below the hy-
drous melting temperature of quartz was not pre-
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dicted by any theory of aqueous silica. This lack of 
prediction is in part attributable to a conceptual 
framework within which the thermodynamics of 
aqueous solutions are developed with reference to a 
state of infinite dilution. The analogy between hy-
drous melts and polymerized aqueous solutions im-
plies that it is perhaps more useful to view the mix-
ture of aqueous silica monomers and multimers at 
crustal metamorphic conditions as precursors to the 
polymerized hydrous melt produced at the water-
saturated quartz solidus. Within such a framework, 
the structural chemistry of silicate melts (e.g. Hess 
1971, 1995) will provide the best guide to speciation 
of dense aqueous fluids. 

Initial steps toward developing new thermody-
namic models of aqueous silica are under way. New-
ton & Manning (2003) investigated the thermody-
namic properties of polymerized silicate solutions by 
constraining the activity coefficient of aqueous silica 
at 800 °C and 12 kbar through measurement of the 
concentration of total dissolved aqueous silica 
(SiO2(t)) in H2O in equilibrium with silica-buffering 
mineral assemblages. For the reaction 2 SiO2 
monomers (m) = 1 Si2O4 dimer (d), the equilibrium 
constant (Kmd) is Kmd = Xd/Xm

2, where X represents 
the mole fraction of SiO2(t) occurring as the sub-
scripted species, and mixing is assumed to be ideal. 
This formulation is valid irrespective of the hydra-
tion states of the silica species because of the small 
silica concentration at these conditions (≤2.5 mol 
%). For a standard state of unit activity of the hypo-
thetical pure-monomer solution at the P and T of in-
terest, the monomer-dimer model leads to 
  γ s = X m X s  and 

Kmd =
1− γ s( )
2γ s

2Xs

 (1) 

where γs and Xs are the activity coefficient and mole 
fraction of total silica. The data yield Kmd =155 at 
800 °C and 12 kbar, in excellent agreement with re-
sults from in situ Raman spectroscopy of a quartz-
saturated solution at the same P-T (Zotov & Keppler 
2002). Thermodynamic modeling indicates that 
higher polymers are unlikely to be significant at this 
P-T. In the system SiO2-H2O, a solution in equilib-
rium with quartz at 800 °C, 12 kbar, contains 2.5 
mol % silica, of which 70 % occurs in dimers, and γs 
is small (0.30). Even at the low concentration (0.1 
mol %), the activity coefficient is only 0.75 and the 
dissolved silica is substantially polymerized (25%). 

2 Al AND Al-Si COMPLEXES 

Like quartz, the solubility of corundum (Al2O3) and 
diaspore (AlO(OH)) in H2O increase with P and T 
(Becker et al. 1983; Lin 2001; Tropper & Manning, 
in press). At 10 kbar, corundum solubility increases 

from 1 millimolal at 700 °C to 20 millimolal at 1100 
°C. At all T, Al solubility in H2O in equilibrium with 
diaspore or corundum at 10 kbar is at least ten times 
that at 1 kbar. Multimeric Al clusters have been ob-
served in concentrated solutions at low P and T (e.g. 
Öhman & Sjoberg 1981; Bottero et al. 1987; Furrer 
et al. 1992, 2002; Boudot et al. 1996; Gérard et al. 
2001). Though no direct observation has yet been 
made at elevated P and T, it is possible that, as with 
silica, the enhanced solubility of Al arises in part 
from increased stability of multinuclear Al clusters. 

Aqueous fluids in the crust and mantle coexist 
with silicate minerals, so it is of fundamental impor-
tance to characterize solution and transport mecha-
nisms of Al in Si-bearing solutions. Our experiments 
on the solubility of corundum (Al2O3) + kyanite 
(Al2SiO5) in H2O at 700 °C, 10 kbar, yield higher Al 
solubility (6.17±0.55 mmol/kg H2O) relative to co-
rundum-only in H2O at the same conditions. Be-
cause pH is near neutral, the elevation of Al concen-
tration above that in the system corundum-H2O 
implies formation of Al-Si multimers. 

Al-Si complexing in aqueous solutions is a sub-
ject of some dispute. The formation of Al-Si com-
plexes involving a bridging O may form in a wide 
variety of stoichiometries (e.g. Mueller et al. 1981). 
Browne & Driscoll (1992) reported that at 25 °C, 1 
bar, 95% of aqueous Al and Si were bound in Al-Si 
complexes, primarily AlOSi(OH)3

2+ formed via 

Al3+ +H4SiO4 = AlOSi(OH)3
2+ +H+ (2) 

This result was challenged by Farmer & Lumsdon 
(1994), who found that minimal pH differences be-
tween Al solutions with and without Si were incon-
sistent with extensive Al-Si polymerization. Pok-
rovski et al. (1996) obtained a similar result at 25 
°C. Significantly, however, Pokrovski et al. (1996) 
and Salvi et al. (1998) showed that AlOSi(OH)3

2+ 
and other Al-Si complexes become progressively 
more stable with increasing T along the steam satu-
ration curve. Thus, although Al-Si complexes are 
likely unimportant at equilibrium at 25 °C in natural 
waters, they may predominate in high-T environ-
ments such as hydrothermal systems. Combination 
of these observations with the new results on corun-
dum-kyanite solubility suggests that enhanced sta-
bility of Al-Si complexes persists to the highest P 
and T yet studied, which represent deep crustal and 
mantle metasomatic environments. 

3 Na-Al-Si COMPLEXES 

A simple compositional model for the continental 
crust is feldspar + quartz. Thus, the extension of re-
sults in simple systems described above logically in-
volves addition of alkalis. Antignano & Manning 
(2003) measured the solubility of albite+quartz in 
H2O at 580°C, 5-12 kbar. Albite exhibited incongru-



ent dissolution, yielding a husk of paragonite 
(NaAl3Si3O10(OH)2) that mantles the albite grain. 
This is important because it produces a composition-
ally invariant solution at equilibrium and fixed P-T. 
The concentration of total dissolved solids (TDS) 
reaches 1.0 molal at 12 kbar. Si, Na, and Al solubili-
ties all increase strongly with P, such that at 12 kbar 
molalities are: Si, 0.80; Na, 0.15; Al, 0.08. The 
aqueous Si concentrations in the albite-only experi-
ments are higher than those in fluid equilibrated with 
quartz (Manning 1994) at the same conditions. This 
is consistent with the data of Anderson & Burnham 
(1983) on albite-H2O at low P. Enhanced solubility 
of silica in the presence of albite+quartz, relative to 
quartz alone, suggests complexing of Si with Na and 
Al. Strong support for the formation of polymers lies 
in the fact that pH is near-neutral, so deprotonated 
silicic acid monomers are not abundant in these so-
lutions. Formation of multimeric complexes involv-
ing Si, Al, and Na also explains the enhancement of 
Al solubility relative to that in equilibrium with co-
rundum in H2O. These complexes probably include 
a mixture of Na-Al, Na-Si, and Na-Al-Si molecules. 
Alkali-Al and Alkali-Si complexes are stable over a 
wide range of P and T, and may predominate under 
appropriate conditions (Anderson et al. 1987; Pascal 
& Anderson 1989; Anderson 1995; Pokrovskii & 
Helgeson 1995, 1997; Diakanov et al. 1996; Tanaka 
& Takahashi 1999). Na-Al-Si complexing has not 
been characterized in sufficient detail, but the stabil-
ity of Si-Al trimers with associated Na+ in alumi-
nosilicate glasses and melts suggests that such struc-
tures are likely stable in aqueous solution as well 
(e.g. de Jong et al. 1981; Kubicki & Sykes 1995). In 
addition, the relatively low P and T of the albite-
H2O critical curve (Shen & Keppler 1997) are con-
sistent with extensive Na-Al-Si complexing in the 
supercritical fluid phase. 

4 IMPLICATIONS 

The formation of polymeric silicate complexes in 
crustal and mantle fluids has important conse-
quences for mass transfer and fluid properties. Vis-
cosity and diffusivity will be significantly different 
in a polymer-bearing fluid than in a simple electro-
lyte solution. The large compositional dependence of 
silica polymerization (Newton & Manning 2003) 
yields a greater contrast in chemical potentials be-
tween different silica-buffering assemblages. For 
example, transport from silica-saturated to silica-
undersaturated rocks (e.g. crustal to mantle litholo-
gies in subduction zones) will require less fluid to 
attain the same compositional shift in the presence 
of polymers than in their absence (Newton & Man-
ning 2002). The substantial enhancement of Al solu-
bility through formation of Al-Si and Na-Al-Si com-
plexes provides a simple explanation for the long-

standing problem of precipitation of abundant alu-
minosilicate minerals from aqueous fluids in a wide 
range of metamorphic environments (e.g. Kerrick 
1988; Widmer & Thompson 2001; Sepahi et al. 
2004). A more general problem in crustal metamor-
phism is that many metamorphic rocks show evi-
dence for significant compositional modification by 
flowing fluids (e.g. Ague 1997), but the fluid vol-
umes required to produce the effect are often unrea-
sonably high. Polymer formation could ameliorate 
this dilemma because it provides a mechanism for 
more efficient mass transfer. Thus, the recognition 
of polymeric silicate complexes represents an impor-
tant step toward understanding water-rock interac-
tion in metamorphic and igneous environments of 
the crust and mantle. 
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