Solubility of corundum + kyanite in H$_2$O at 700°C and 10 kbar: evidence for Al-Si complexing at high pressure and temperature

C. E. MANNING

Department of Earth and Space Sciences, University of California, Los Angeles, CA, USA

ABSTRACT

The solubility of the assemblage corundum + kyanite in H$_2$O was determined at 700°C and 10 kbar, using a piston-cylinder apparatus and rapid-quench/fluid-extraction techniques. Weighted mean concentrations of total Al and Si were 5.80 ± 0.03 mmol kg$^{-1}$ H$_2$O and 0.308 ± 0.003 mol kg$^{-1}$ H$_2$O, respectively (1σ errors). The Al concentration is nearly five times higher than that of corundum solubility in pure H$_2$O. This difference is interpreted to arise from complexing between Si and Al to form HAlSiO$_4$aq species. Charged or more polymerized species are also possible, but their abundance cannot be constrained based on these experiments. Assumption of a single aqueous aluminosilicate complex permits calculation of the thermodynamic consequences of Al-Si interaction in high-pressure fluids, as well as phase diagrams for the system Al-Si-O-H. Formation of Al-Si complexes leads to a large increase in dissolved Al with increasing Si in solution, such that Al concentration in equilibrium with kyanite + quartz is predicted to be 7.1 mmolal, higher than with kyanite + corundum. The elevated concentration of Si in deep-crustal and mantle aqueous fluids suggests that Al must readily be dissolved and transported by Al-Si complexing in high-pressure metamorphic and metasomatic environments. The results provide a simple explanation for the common observation of kyanite + quartz segregations in eclogites and Barrovian metamorphic rocks.

Key words: aluminium mobility, corundum solubility, crustal fluids, hydrothermal experiments.

INTRODUCTION

Studies of compositional change during metamorphism require an appropriate geochemical reference frame, in which an extensive parameter such as volume, mass, or element concentration is conserved (e.g., Irving 1911; Lindgren 1912, 1918; Ridge 1949; Poldervaart 1953; Gresens 1967; Grant 1986). In a classic study, Carmichael (1969) concluded that a constant-Al reference frame was supported by the small scale and magnitude of Al mobility during amphibolite-grade metamorphism of pelites in several localities. The inference was based on metamorphic reaction textures, and supported by low inferred solubility and diffusivity of Al in metamorphic fluids. Carmichael’s approach has been applied in many subsequent studies, leading to widespread assumption that, to first order, Al is immobile in metamorphism and metasomatism.

In contrast, some studies of metamorphic textures have suggested that Al may be mobile in geologic fluids (e.g., Yardley 1977; Vernon 1979). Significant Al mobility during metamorphism is supported by occurrences of Al-rich minerals such as aluminosilicates (Al$_2$SiO$_5$) in veins and segregations, which imply at least local metasomatic transfer of Al (Kerrick 1988, 1990; Cesare 1994; Ague 1995; Nabelek 1997; Whitney & Dilek 2000; Widmer & Thompson 2001; McLelland et al. 2002; Sepahi et al. 2004). In the absence of evidence for unusually high fluid fluxes, such observations require high Al solubility and/or mobility in metamorphic
fluids. Thus, Al may be locally conserved during some metamorphic and metasomatic processes, but there are many other cases in which it appears to be quite mobile.

Element mobility requires elevated diffusivity and/or solubility. If the diffusion coefficient for Al is low compared to other species, it will be less readily transported in a given chemical potential gradient. Aqueous diffusion coefficients at fixed pressure (P) and temperature (T) decrease with increasing charge, though the effect is modest at high P and T (Oelkers & Helgeson 1988). Thus, Al$^{3+}$ diffusivity is expected to be lower than monovalent or divalent cations, as inferred by Carmichael (1969). However, Al$^{3+}$ will only be present at extremely low pH at most metamorphic P and T. Instead, the predominant Al hydroxide species over a wide range of pH are Al(OH)$_3$ and Al(OH)$_4$ (Pokrovskii & Helgeson 1995), for which diffusion coefficients should be similar to other neutral and monovalent species. Significantly lower diffusivity of Al than for other elements in metamorphic fluids is therefore unlikely, as has been shown experimentally by Vidal & Durin (1999) and Verlaguet et al. (2006).

A second control on mobility is the capability of metamorphic fluids to dissolve Al. Experiments on corundum solubility in H$_2$O at low pressure (<3 kbar) and a wide range of metamorphic temperatures indicate low Al concentrations (e.g., Morey 1957; Anderson & Burnham 1967; Burnham et al. 1973; Becker et al. 1983; Ragnarsdottir & Walther 1985; Walther 1997). Corundum solubility in pure H$_2$O increases with pressure (Becker et al. 1983; Tropper & Manning 2007), but the effect is small: for example, at 700°C, Al concentration in H$_2$O in equilibrium with corundum rises from 0.04 mmolal at 2 kbar to 1.2 mmolal at 10 kbar (Tropper & Manning 2007), indicating that although there is a large relative increase, the total corundum solubility in H$_2$O at high P is still quite low. However, crustal and mantle fluids contain other dissolved constituents with which Al might interact. Mechanisms proposed for increasing Al solubility include H$^+$ metasomatism by acidic solutions (Gresens 1971; Vernon 1979; Ague 1994; Zaraisky 1994; Nabelek 1997; McLelland et al. 2002) and complexing with alkalis and/or halides (Anderson & Burnham 1967, 1983; Korzhinskii 1987; Sanjuan & Michard 1987; Pascal & Anderson 1989; Pokrovskii & Helgeson 1995, 1997; Azaroual et al. 1996; Diakonov et al. 1996; Tagirov & Schott 2001; Walther 2001; Newton & Manning 2006). A potential complexing agent that has received only minor attention is Si. Al-Si complexing has been inferred at low P and T in acidic and basic solutions (Pokrovskii et al. 1996; Salvi et al. 1998). Given that Si is quite concentrated in high-P fluids, it is possible that Al solubility could be strongly influenced by Al-Si interaction in the aqueous phase. However, no experimental studies have addressed this problem at deep-crustal and upper-mantle conditions.

This article presents new data on Al in metamorphic fluids based on experiments that constrain equilibrium solubility of the assemblage corundum + kyanite in Si-bearing H$_2$O at 10 kbar and 700°C. The results demonstrate that Al is substantially more soluble in Si-rich solutions than in pure H$_2$O at the same conditions. The data permit derivation of thermodynamic properties of a hypothetical Al-Si species, and show that aqueous Al will predominantly occur as Al-Si complexes over a wide range of silica activities.

METHODS

For each experiment, several 4–5 mm cleavage flakes were taken from gem-quality kyanite crystals from Bahia, Brazil (0.20 wt.% Fe$_2$O$_3$; Bohlen et al. 1991) and loaded into Pt capsules (5 mm O.D.) with 50–75 µl of nanopure H$_2$O. In several cases, finely ground Brazilian quartz (Manning 1994), reagent grade γ-Al$_2$O$_3$, and/or a corundum chip from a pure, flux-grown single crystal (Newton & Manning 2006) were also added. The quartz and γ-Al$_2$O$_3$ were ground for approximately 30 min in a mortar and pestle prior to loading. Kyanite grains were contained within crimped inner Au capsules (2 mm O.D.). This arrangement helped prevent crystal breakage while allowing the solution to react with the kyanite. Outer Pt capsules were sealed by arc welding. Reported H$_2$O mass reflects the weight prior to welding. Weight is lost on capsule sealing owing to minor vaporization of Pt and H$_2$O, but weight losses during welding were usually small (typically 0.1 mg).

Experiments were conducted in an end-loaded piston-cylinder apparatus with 2.54 cm diameter NaCl-graphite-BN furnace assemblies (Manning & Boettcher 1994). Temperature was controlled using Pt-Pt$_{90}$Rh$_{10}$ thermocouples, with no correction for the effect of pressure on emf. The combined accuracy and precision in reported temperature is estimated to be ±5°C. Pressure was maintained to within 200 bar gauge pressure. Rapid quenching was achieved by cutting power to the apparatus, which cooled the experiments to approximately 50°C in approximately 1 min (Manning & Boettcher 1994; Manning 1994).

After each experiment, capsules were cleaned and then punctured to extract the quenched fluid. This was initially done directly by a micropipette, with subsequent dilution in nanopure H$_2$O; however, some solution occasionally sprayed from the puncture in some experiments. In such cases it could not be demonstrated that the extracted fluids were faithful samples of the quenched fluid, and these runs were discarded. To avoid this problem, a Teflon extraction vessel was used (Manning & Boettcher 1994), which facilitated consistently accurate fluid sampling. Capsules were punctured in 15 ml of 5% HNO$_3$ and decanted after allowing >3 h for mixing of quench solute and diluent. Blank tests on kyanite crystals yielded no detectable Al or Si. Diluted experimental solutions were analyzed for Al and Si.
concentrations by inductively coupled plasma (ICP) emission spectroscopy using carefully prepared Si and Al standard solutions. Six to nine counting periods were used during analysis. Unless otherwise noted, reported uncertainties are propagated 1σ analytical errors. Solid products were mounted on aluminum stubs for optical and scanning electron microscope (SEM) study of textures and phases.

RESULTS

Results are presented in Table 1. Reported concentrations are weighted means of multiple ICP analysis cycles; differences in concentration uncertainties reflect varying instrument conditions and standardization characteristics. Other potential sources of error include diluent volumes and mass of H₂O in experiments. Estimated errors in diluent volumes were <1%, which leads to errors smaller than analytical errors; they are therefore ignored. Errors in H₂O in the experimental charge arise from water loss during welding. If the typical 0.1 mg welding-related weight loss was H₂O, solubilities in Table 1 would require upward adjustment of Al and Si molality (mAl and mSi) of less than approximately 10⁻⁵ and approximately 10⁻³, respectively. Because these errors are small compared to analytical uncertainty, they were ignored with one exception. A large, non-negligible welding weight loss of 5.56 mg occurred during preparation of Experiment 402 (Table 1), and concentrations are reported as the midpoint between the maximum and minimum values that result from incorporating this uncertainty.

Kyanite + H₂O starting materials

Initial experiments were designed to determine fluid compositions in equilibrium with kyanite + corundum by dissolving kyanite in pure H₂O. The greater solubility of Si relative to Al caused nucleation and growth of hexagonal corundum platelets on kyanite surfaces (Fig. 1). Nine replicate experiments at 700°C and 10 kbar yielded substantial growth of corundum on kyanite surfaces (Fig. 1). However, as shown in Table 1 and Fig. 2, Al and Si concentrations showed erratic variations independent of run duration (mAl = 0.002–0.023 and mSi = 0.076–0.425). Only pure H₂O was used, so equilibrium pH differences between experiments are implausible. The erratic Al concentrations show no correlation with experiment duration, mass of kyanite, or fluid volume (Table 1). Moreover, there was no textural evidence for significant quench solids (Fig. 1).

Scanning electron microscope petrography revealed that kyanite surfaces were entirely coated by corundum in four of these experiments (Fig. 1A), but that the corundum sheath was incomplete in the other five (Fig. 1C). Fluid compositions correlate with these textural differences. Figure 2 shows that experiments producing partly coated kyanite gave inconsistent Al solubility. By contrast, when kyanite was completely covered by corundum, a narrow range of Al solubility was observed. Moreover, the Al solubility recorded when kyanite was partly coated was either higher or lower than, but not the same as, that in solutions coexisting with fully coated kyanite (Fig. 2).

These observations imply that partial coating records incomplete equilibration, such that resulting fluids were either supersaturated or undersaturated metastably with respect to corundum + kyanite, whereas full development of a corundum sheath reflects equilibrium conditions. Presumably, the initially strong undersaturation of the pure H₂O starting fluid led to an erratic approach to equilibrium. In some instances, persistent metastable fluid compositions and textures were produced, while in others, equilibrium was approached closely. Although it is commonly assumed

Table 1

<table>
<thead>
<tr>
<th>Expt. No.</th>
<th>Duration (h)</th>
<th>Starting materials</th>
<th>Start H₂O (ml)</th>
<th>Start SiO₂ (mg)</th>
<th>Start Al₂O₃ (mg)</th>
<th>Extraction method</th>
<th>Final Si (molal)</th>
<th>Final Al (mmolal)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>364</td>
<td>48</td>
<td>KW</td>
<td>63.26</td>
<td>–</td>
<td>–</td>
<td>MP</td>
<td>0.425 (09)</td>
<td>23.93 (09)</td>
<td>Partial co coat on ky</td>
</tr>
<tr>
<td>369</td>
<td>24</td>
<td>KW</td>
<td>55.24</td>
<td>–</td>
<td>–</td>
<td>MP</td>
<td>0.422 (04)</td>
<td>9.95 (06)</td>
<td>Partial co coat on ky</td>
</tr>
<tr>
<td>372</td>
<td>69</td>
<td>KW</td>
<td>59.04</td>
<td>–</td>
<td>–</td>
<td>EV</td>
<td>0.076 (01)</td>
<td>1.75 (01)</td>
<td>Partial co coat on ky</td>
</tr>
<tr>
<td>376</td>
<td>95</td>
<td>KW</td>
<td>55.08</td>
<td>–</td>
<td>–</td>
<td>EV</td>
<td>0.305 (02)</td>
<td>11.99 (01)</td>
<td>Partial co coat on ky</td>
</tr>
<tr>
<td>377</td>
<td>24</td>
<td>KW</td>
<td>71.46</td>
<td>–</td>
<td>–</td>
<td>EV</td>
<td>0.206 (01)</td>
<td>2.70 (26)</td>
<td>Partial co coat on ky</td>
</tr>
<tr>
<td>363</td>
<td>24</td>
<td>KW</td>
<td>72.02</td>
<td>–</td>
<td>–</td>
<td>MP</td>
<td>0.333 (01)</td>
<td>6.30 (33)</td>
<td>Complete co coat on ky</td>
</tr>
<tr>
<td>365</td>
<td>73</td>
<td>KW</td>
<td>54.89</td>
<td>–</td>
<td>–</td>
<td>MP</td>
<td>0.377 (04)</td>
<td>5.87 (06)</td>
<td>Complete co coat on ky</td>
</tr>
<tr>
<td>366</td>
<td>7.5</td>
<td>KW</td>
<td>67.48</td>
<td>–</td>
<td>–</td>
<td>MP</td>
<td>0.286 (02)</td>
<td>6.27 (40)</td>
<td>Complete co coat on ky</td>
</tr>
<tr>
<td>370</td>
<td>48</td>
<td>KW</td>
<td>60.37</td>
<td>–</td>
<td>–</td>
<td>MP</td>
<td>0.336 (02)</td>
<td>5.53 (10)</td>
<td>Complete co coat on ky</td>
</tr>
<tr>
<td>398</td>
<td>24</td>
<td>KCW</td>
<td>69.06</td>
<td>–</td>
<td>1.41</td>
<td>EV</td>
<td>0.147 (01)</td>
<td>2.01 (02)</td>
<td>Partial co coat on ky</td>
</tr>
<tr>
<td>400</td>
<td>47</td>
<td>KQW</td>
<td>60.30</td>
<td>0.89</td>
<td>–</td>
<td>EV</td>
<td>0.293 (01)</td>
<td>2.99 (01)</td>
<td>Partial co coat on ky</td>
</tr>
<tr>
<td>409</td>
<td>67</td>
<td>KQW</td>
<td>76.45</td>
<td>0.50</td>
<td>–</td>
<td>EV</td>
<td>0.281 (01)</td>
<td>5.73 (04)</td>
<td>Partial co coat on ky</td>
</tr>
<tr>
<td>402</td>
<td>89</td>
<td>KQAW</td>
<td>72.36</td>
<td>0.96</td>
<td>0.20</td>
<td>EV</td>
<td>0.292 (12)</td>
<td>6.64 (27)</td>
<td>Partial co coat on ky</td>
</tr>
</tbody>
</table>

Parenthetical numbers are weighted 1σ analytical uncertainties, except 402, for which errors indicate range between minimum and maximum due to welding weight loss of 5.56 mg. K, kyanite; W, H₂O; C, corundum chip (single crystal); Q, quartz powder; A, γ-Al₂O₃ powder; MP, micropipette; EV, extraction vessel (see text); co, corundum; ky, kyanite.

© 2007 The Author

Journal compilation © 2007 Blackwell Publishing Ltd, Geofluids, 7, 258–269
that mineral layers prevent attainment of equilibrium, the corundum coatings were easily disaggregated or cut off, and examination in cross section revealed them to be loose, porous layers of randomly oriented corundum flakes (Fig. 1). Such loose layers are not likely to have impeded fluid access to the kyanite surfaces.

Kyanite + H₂O + corundum chip starting materials

In an attempt to drive solutions to equilibrium more effectively, a single ultrapure synthetic corundum chip was included with kyanite and H₂O and held at 700°C, 10 kbar for 24 h (Run 398, Table 1). Irregular dissolution pits developed on the corundum crystal and an incomplete corundum layer grew on the kyanite. Measured aqueous Al and Si contents were 0.201 ± 0.003 mmol kg⁻¹ and 0.146 ± 0.002 mol kg⁻¹, respectively. These concentrations are lower than all but one of the experiments in which only kyanite was placed in the charge. This result suggests that equilibration was also a problem in this experiment. If single crystals can be used to circumvent the inferred erratic approach to equilibrium, then run durations significantly longer than 24 h are likely required.

Kyanite + quartz-Al₂O₃ powders + H₂O starting materials

As an alternative test of the hypothesis that strong initial undersaturation led to erratic results, starting solutions closer to the predicted final composition were generated within the charge. The high solubilities at the experimental conditions prevented simple preparation of such fluids at 1 atm and 25°C. Instead, powdered natural quartz ± synthetic anhydrous γ-Al₂O₃ were added with the kyanite crystals. Because of the high surface area of the powders, their dissolution rate was likely much greater than that of
the larger kyanite crystals, which would have caused fluid composition to evolve rapidly to slightly supersaturated or undersaturated compositions prior to significant kyanite dissolution. Powder weights corresponded to a desired starting fluid composition near the predicted phase boundary, assuming complete dissolution. In addition to testing the idea that the extent of corundum coating is a guide to equilibration, these experiments also provide compositional reversals because the final composition could be approached from different directions.

Multiple experiments were conducted using varying amounts of powders (Table 1). Partial corundum coatings grew on kyanite surfaces in all these runs (Fig. 1D), as anticipated from the different quantities of SiO₂ and Al₂O₃ added. Note that the partial coating in this set of experiments is expected due to the smaller mass of kyanite that must be dissolved to attain equilibrium, rather than disequilibrium. As illustrated in Fig. 3, the Si and Al concentrations in the two longer runs of this type (>60 h) agree well with the concentrations in the kyanite + H₂O experiments in which a complete corundum coat was produced. Run 402 contained γ-Al₂O₃ powder in excess of predicted total dissolved Al; if all powder initially dissolved, this experiment would have approached equilibrium from supersaturation. Run 400 was shorter in duration (47 h) and contained no Al₂O₃ powder. This experiment yielded Si concentration similar to the other two, but lower Al (Fig. 3, Table 1).

DISCUSSION

Equilibrium fluid compositions

Two sets of experiments are interpreted to constrain equilibrium Al and Si contents at 700°C, 10 kbar: kyanite-only experiments in which a complete corundum coating developed (runs 363, 365, 366, and 370), and kyanite-powder runs >60 h in duration in which corundum was saturated (runs 402 and 409). These six experiments yield weighted mean $m_{\text{Al}} = 5.80 \pm 0.03 \cdot 10^3$ and $m_{\text{Si}} = 0.308 \pm 0.003$ mol kg⁻¹ H₂O (Fig. 3). As noted above, runs 398 and 400 were omitted because run times were evidently too short, and the kyanite-only experiments with incomplete coats were rejected because they display textural evidence for partial equilibration which correlates with erratic final compositions. The more rapid, erratic approach to equilibrium in kyanite-only experiments is plausible because of greater initial disequilibrium between H₂O and kyanite relative to Si-Al-bearing H₂O and kyanite in the other configurations.

It is possible that the interpretation of disequilibrium in some experiments is incorrect. If all results are averaged, mean Al and Si molalities would be $7 \pm 6 \cdot 10^{-3}$ and 0.3 ± 0.1 molal. These values differ from the preferred results chiefly in their larger uncertainties.

Comparison to previous results

Corundum solubility in H₂O was measured at 700°C, 10 kbar by Becker et al. (1983) and Tropper & Manning (2007). Results of these two studies show that Al concentrations increase strongly with pressure. At 700°C, 10 kbar, the two studies are in good agreement, giving measured total Al concentration of 1.85 ± 0.13 mmolal (Becker et al. 1983) and 1.2 ± 0.2 mmolal (Tropper & Manning 2007). These Al concentrations are significantly lower than the value of 5.80 ± 0.03 mmolal measured in the present study. The greater Al concentration in Si-bearing solutions is a strong indication of Si-Al complexing.

Silicon concentrations in equilibrium with kyanite and corundum have not previously been measured at 700°C, 10 kbar; however, Newton & Manning (2003) found that, at 800°C and 12 kbar, Si molalities in equilibrium with quartz and kyanite + corundum were 1.413 and
0.984, respectively, giving a difference (ΔmSi) of 0.429 molal. At 700°C, 10 kbar, quartz solubility is 0.757 molal (Manning 1994), which, when combined with the Si content in equilibrium with kyanite + corundum determined in the present study (0.308 molal), gives a very similar ΔmSi of 0.449 molal. Because the small change in chemical potential difference over this P-T range should result in comparatively minor shifts ΔmSi, the similarity in these values lends confidence that equilibrium was approached in the present study.

Thermodynamic analysis

The larger solubility of corundum in Si-bearing fluids than in pure H2O could be due either to pH effects or complexing with Si. However, enhancement of Al solubility by shifting pH to stabilize charged Al-hydroxide species [e.g., Al(OH)3aq, Al(OH)4–, etc.] is unlikely because the only additional component in the solutions is Si. Rather, the increase in Al solubility more probably indicates the formation of Al-Si complexes in solution. As shown before, the thermodynamic properties of Al-Si complexes can be evaluated in light of data on aqueous Al hydroxides and Si species and the results of the present study.

Al hydroxide species in the system Al-O-H

Pokrovskii & Helgeson (1995) derived thermodynamic properties of aqueous Al hydroxide species based in part on the high P and T corundum solubility data of Becker et al. (1983). They found that at 700°C, 5 kbar, the only relevant species were Al(OH)3+ and Al(OH)4– over a wide range of pH of approximately 1 to >8. Following Pokrovskii & Helgeson, these species are referred to below as HAIO2,aq and AlO2– for simplicity; by convention, the changes in standard molal Gibbs energy of reaction (ΔGm) for the equilibria HAIO2,aq + H2O = Al(OH)3+ and AlO2– + 2H2O = Al(OH)4– are zero.

Pokrovskii & Helgeson (1995) used the Helgeson–Kirkham–Flowers equation of state (Helgeson et al. 1981; Tanger & Helgeson 1988), which is considered accurate to a maximum pressure of 5 kbar. However, their data can be extrapolated to 10 kbar using the approach of Manning (1998). Equilibrium constants (K) for the equilibria

\[\text{Al}_2\text{O}_3 + \text{H}_2\text{O} = 2\text{HAIO}_2,\text{aq} \] \hspace{1cm} (1)

and

\[\text{HAIO}_2,\text{aq} = \text{H}^+ + \text{AlO}_2^- \] \hspace{1cm} (2)

were calculated using data for aqueous Al species from Pokrovskii & Helgeson (1995) and for minerals from SUPCRT92 (Johnson et al. 1992). Properties of H2O are from Haar et al. (1984), as calculated by SUPCRT92. In all calculations, standard states for minerals and H2O were unit activity of the pure phase, and for aqueous species, unit activity of the hypothetical 1 molal solution referenced to infinite dilution. Activity coefficients of neutral complexes were assumed to be unity; concentrations of charged species were low (<10–3 molal), and activity coefficients were therefore also assumed to be unity.

Values of log K1 and log K2 vary linearly with the logarithm of H2O density at P ≥ 3 kbar (Fig. 4). This linearity arises from the fact that \(\frac{\delta \ln K}{\delta \rho_{\text{H}_2\text{O}}} \) = \(-\Delta V^r / \beta_{\text{H}_2\text{O}} \) RT (where \(\beta \) is the coefficient of isothermal compressibility), and \(\Delta V^r / \beta_{\text{H}_2\text{O}} \) approaches a constant value at high P. Because the product RT is also constant along isotherms, the dependence of log K on log \(\rho_{\text{H}_2\text{O}} \), depicted in Fig. 4, is expected to be linear at high H2O density. Linear fits at 700°C and ≥3 kbar give

\[\log K_1 = 6.177 \log \rho_{\text{H}_2\text{O}} - 5.745 \] \hspace{1cm} (3)

and

\[\log K_2 = 6.633 \log \rho_{\text{H}_2\text{O}} - 4.730 \] \hspace{1cm} (4)

The uncertainty in the thermodynamic data is poorly known, but is estimated to be ± 500 cal mol–1 (e.g., Shock & Helgeson 1988). Figure 4 shows that linear extrapolations to high P using Eqns 3 and 4 are reasonable in light of these uncertainties. Calculated values of log K1 and log K2 at the experimental conditions are given in Table 2.

The extrapolation scheme outlined above can be tested by comparing corundum solubility in H2O calculated from the derived equilibrium constants with experimental

![Fig. 4. Log \(\rho_{\text{H}_2\text{O}} \) versus log K at 700°C for reactions (1) and (2) (text). Circles show calculated values from 2 to 5 kbar at 0.5 kbar increments (SUPCRT92) with 500 cal mol–1 estimated uncertainty (Shock & Helgeson 1988). Dashed lines are extrapolations to 25 kbar based on linear fits to 3–5 kbar values (equations 3 and 4, text).](image-url)
measurements. Corundum solubility was computed by combination of mass-action equations for equilibria 1, 2 and H2O dissociation:

\[
\text{H}_2\text{O} = \text{H}^+ + \text{OH}^- \tag{5}
\]

(Table 2), along with the charge-balance constraint

\[
m_{\text{H}^+} = m_{\text{AlO}_2^-} + m_{\text{OH}^-} \tag{6}
\]

which leads to

\[
m_{\text{H}^+} = (K_1^{1/2} K_2 + K_3)^{1/2} \tag{7}
\]

Solution of Eqn 7 using data from Table 2 gives \(m_{\text{H}^+}\), and allows concentrations of remaining species to be calculated by back substitution. This gives \(m_{\text{SiAlO}_2,\text{aq}} = 1.12\) mmolal and \(m_{\text{AlO}_2^-} = 0.07\) mmolal, or total Al concentration in H2O in equilibrium with corundum of 1.19 mmolal, in excellent agreement with the 1.2 ± 0.2 mmolal value of Tropper & Manning (2007), but slightly lower than the result of Becker et al. (1983).

The results show that independently calculated solubility agrees well with experiments in H2O at 10 kbar and 700°C. This supports the conclusion based on the present experimental results that the higher corundum solubility in Si-bearing fluids results from Al-Si interaction in the aqueous phase. However, evaluation of the thermodynamic properties of Al-Si species first requires determination of the properties of Si species in the Al-free Si-O-H system.

Silica species in the system Si-O-H

In SiO2·H2O fluids at high P and T, silica occurs primarily as monomers (SiO2,\(a_{\text{aq}}\), equivalent to H4SiO4) and dimers (Si2O4,\(a_{\text{aq}}\), equivalent to H6Si2O7) (Zhang & Frantz 2000; Zotov & Keppler 2000, 2002; Newton & Manning 2002, 2003). Newton & Manning (2002, 2003) showed that monomers and dimers mix ideally, which allows the equilibrium constant for the reaction

\[
2\text{SiO}_2,\text{aq} = \text{Si}_2\text{O}_4,\text{aq} \tag{8}
\]

to be written

\[
K_q = \frac{m_{\text{Si}_2\text{O}_4,\text{aq}}}{m_{\text{SiO}_2,\text{aq}}} \tag{9}
\]

At 700°C and 10 kbar, Newton & Manning (2002) give \(K_q = 2.83\) (converted from mole fraction concentration scale). Using their equations for calculating species concentrations at quartz saturation yields \(m_{\text{SiO}_2,\text{aq}} = 0.286\) and \(m_{\text{Si}_2\text{O}_4,\text{aq}} = 0.232\). Equilibrium between quartz and silica monomers is described by

\[
\text{SiO}_2 = \text{SiO}_2,\text{aq} \tag{10}
\]

which allows derivation of the standard molal Gibbs energy of monomeric SiO2,\(a_{\text{aq}}\) at 700°C, 10 kbar, from

\[
\Delta G_{\text{SiO}_2,\text{aq}}^\circ = \Delta G_{\text{SiO}_2}^\circ - RT \ln K_{10} = \Delta G_{\text{SiO}_2}^\circ - RT \ln m_{\text{SiO}_2,\text{aq}} \tag{11}
\]

Using \(\Delta G_{\text{SiO}_2}^\circ\) from Table 2 gives \(\Delta G_{\text{SiO}_2,\text{aq}}^\circ\) kJ mol\(^{-1}\). A similar approach was used to derive \(\Delta G_{\text{Si}_2\text{O}_4,\text{aq}}^\circ\) (Table 2).

Al-Si species in the system Al-Si-O-H

Combination of the data for Al hydroxide and silica species (Table 2) with experimental results of the present study permits derivation of the thermodynamic properties of Al-Si complexes. At low P and T, charged Al-Si species are

Table 2 Summary of thermodynamic data at 700°C, 10 kbar.

<table>
<thead>
<tr>
<th>System</th>
<th>Phase, species, or equilibrium</th>
<th>Equation</th>
<th>(\rho) (g cm(^{-3}))</th>
<th>(\log K)</th>
<th>(\Delta G^\circ) (kJ mol(^{-1}))*</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H</td>
<td>H2O</td>
<td></td>
<td>0.944</td>
<td></td>
<td>−295.6</td>
<td>1</td>
</tr>
<tr>
<td>Al-O-H</td>
<td>Corundum + H2O = 2HAIO2,(a_{\text{aq}})</td>
<td></td>
<td>1</td>
<td>−5.900</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HAIO2,(a_{\text{aq}}) = H^+ + AlO_2^-</td>
<td></td>
<td>2</td>
<td>−4.896</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Si-O-H</td>
<td>Quartz</td>
<td></td>
<td>8</td>
<td>−0.543</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2SiO2,(a_{\text{aq}}) = Si2O4,(a_{\text{aq}})</td>
<td></td>
<td>8</td>
<td>0.452</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SiO2,(a_{\text{aq}})</td>
<td></td>
<td>14</td>
<td>−0.800</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HAIIO2,(a_{\text{aq}}) + SiO2,(a_{\text{aq}}) = HAISO4,(a_{\text{aq}})</td>
<td>16</td>
<td>−6.700</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAIISO4,(a_{\text{aq}})</td>
<td></td>
<td>12</td>
<td>1.414</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

*\(\Delta G^\circ\) indicates conventional apparent standard molal Gibbs energy (Benson–Helgeson) at 700°C, 10 kbar.

Data sources: 1, SUPCRT92 (Johnson et al. 1992); 2, Marshall & Franck (1981); 3, Manning (1994) and Newton & Manning (2002) (converted from mole fraction to molality scale); 4, This study.

\(\rho\) indicates conventional apparent standard molal Gibbs energy (Benson–Helgeson) at 700°C, 10 kbar.
evidently more stable than neutral complexes and are abundant primarily in acidic or basic solutions (Pokrovski et al. 1996; Salvi et al. 1998); however, at high \(P \) and \(T \), it is likely that, as with Al-hydroxide species, neutral species predominate over a wide range of pH. Because the present experiments did not control pH, or examine corundum + kyanite solubility as a function of pH, it is not possible to determine the charge or stoichiometry of the Al-Si solutions. Accordingly, it is assumed here that any Al-Si complexing occurs by formation of the neutral complex HAISiO\(_4\)\(\text{aq} \). Although it is likely that the neutral species predominate, the thermodynamic properties derived for this species necessarily reflect only the sum of all Al-Si complexes present in the experimental solutions.

Thermodynamic properties of HAISiO\(_4\)\(\text{aq} \) can be derived from the present experiments by writing the homogeneous equilibrium

\[
\text{HAIO}_2\text{aq} + \text{SiO}_2\text{aq} = \text{HAISiO}_4\text{aq}
\]

for which

\[
K_{12} = \frac{a_{\text{HAISiO}_4\text{aq}}}{a_{\text{HAIO}_2\text{aq}}a_{\text{SiO}_2\text{aq}}}
\]

Activities in the right-hand quotient can be determined from the thermodynamic data in Table 2, results of the corundum-kyanite experiments, and the assumption that \(a_i = m_i \) for neutral species. This gives \(a_{\text{HAIO}_2\text{aq}=1.12} \) at corundum saturation. The activity of SiO\(_2\)\(\text{aq} \) monomers can be derived from the equilibrium

\[
\text{Al}_2\text{SiO}_5 = \text{Al}_2\text{O}_3 + \text{SiO}_2\text{aq}
\]

for which \(K_{14} = a_{\text{SiO}_2\text{aq}=0.158} \) from data in Table 2. Finally, \(a_{\text{HAISiO}_4\text{aq}} \) can be calculated by mass balance

\[
a_{\text{HAISiO}_4\text{aq}} = m_{\text{HAISiO}_4\text{aq}} = m_{\text{Al}_{\text{total}}} - m_{\text{HAIO}_2\text{aq}} - m_{\text{AlO}_2}\]

to give \(a_{\text{HAISiO}_4\text{aq}} = 0.00461 \), \(K_{12} = 25.91 \) and \(\Delta G_{\text{HAISiO}_4\text{aq}} = -1809.5 \text{ kJ mol}^{-1} \) (Table 2).

Speciation of Al-Si-O-H fluids

The thermodynamic data derived above provide a basis for predicting the influence of silica on aqueous Al concentrations derived by dissolution of corundum and kyanite. For example, the equilibrium constant for the kyanite dissolution reaction

\[
\text{Al}_2\text{SiO}_5 + 2\text{H}_2\text{O} = 2\text{HAIO}_2\text{aq} + \text{SiO}_2\text{aq}
\]

is

\[
K_{16} = a^2_{\text{HAIO}_2\text{aq}}a_{\text{SiO}_2\text{aq}}
\]

at unit activities of kyanite and H\(_2\)O. The value of log \(K_{16} \) is \(-6.700 \) (Table 2), as derived from \(a_{\text{HAIO}_2\text{aq}} \) and \(a_{\text{SiO}_2\text{aq}} \) at kyanite-kyanite equilibrium. In the absence of Al-Si complexing, increasing \(m_{\text{Si}_{\text{total}}} \) will lead to increasing activity of monomeric SiO\(_2\)\(\text{aq} \), which in turn would require that HAIO\(_2\)\(\text{aq} \) decrease as its square; that is, if the only significant Al species is HAIO\(_2\)\(\text{aq} \), then with increasing \(m_{\text{Si}_{\text{total}}} \), \(m_{\text{Al}_{\text{total}}} \) should decline from a maximum at corundum saturation until quartz saturation is attained (Fig. 5A). However, interaction of Al and Si to form complexes, here modeled as HAISiO\(_4\)\(\text{aq} \) is strongly favored energetically, by virtue of the relatively large value of \(K_{12} \) of 25.91 derived from the present experiments. Thus, in silica-bearing solutions, Al-Si interaction will remove HAIO\(_2\)\(\text{aq} \) and SiO\(_2\)\(\text{aq} \) (Eqn 12), driving the kyanite dissolution reaction (Eqn 16) to the right. The result is that, at equilibrium, \(m_{\text{Al}_{\text{total}}} \) is higher than predicted assuming simple Si-free Al hydroxide species and reaches a maximum at quartz saturation.

These observations can be quantified by computing the changes in species abundances with \(m_{\text{Si}_{\text{total}}} \). By specifying the concentration of SiO\(_2\)\(\text{aq} \) monomers and using the thermodynamic data in Table 2, the following equations constrain the concentrations of the other aqueous species:

\[
\begin{align*}
 \text{SiO}_2\text{aq} & = K_8 m_{\text{SiO}_2\text{aq}}^2 \\
 \text{HAIO}_2\text{aq} & = K_4^{1/2} (\text{corundum stability field}) \\
 \text{HAIO}_2\text{aq} & = (K_{16}/m_{\text{SiO}_2\text{aq}})^{1/2} (\text{kyanite stability field}) \\
 \text{HAISiO}_4\text{aq} & = K_{14} m_{\text{HAIO}_2\text{aq}} m_{\text{SiO}_2\text{aq}} \\
 m_{\text{Al}^+} & = (K_2 K_1^{1/2} + K_4^{1/2}) \\
 m_{\text{OH}^-} & = K_5/m_{\text{Al}^+} \\
 m_{\text{AlO}_2^-} & = K_5 m_{\text{HAIO}_2}/m_{\text{Al}^+} \\
 m_{\text{Si}_{\text{total}}} & = m_{\text{SiO}_2\text{aq}} + 2 m_{\text{SiO}_2\text{aq}} + m_{\text{HAISiO}_4\text{aq}} \\
 m_{\text{Al}_{\text{total}}} & = m_{\text{HAIO}_2\text{aq}} + m_{\text{AlO}_2^-} + m_{\text{HAISiO}_4\text{aq}}
\end{align*}
\]

Unit activity coefficients were assumed in all calculations. The results of the speciation calculation in the system Al-Si-O-H are shown in Fig. 5B. The speciation depends on the mineral with which the fluid coexists. With increasing \(m_{\text{Si}_{\text{total}}} \) in the corundum stability field, \(m_{\text{HAIO}_2\text{aq}} \), \(m_{\text{AlO}_2^-} \), and pH are constant, but \(m_{\text{Al}_{\text{total}}} \) increases due to increasing \(m_{\text{HAISiO}_4\text{aq}} \). The low but non-negligible AlO\(_2^-\) molality shifts calculated pH from neutrality (pH = 3.79) to the slightly acidic value of 3.70. In the kyanite stability field, the dependence of \(m_{\text{HAISiO}_4\text{aq}} \) and \(m_{\text{Al}_{\text{total}}} \) on Si change because of the decrease in \(m_{\text{HAIO}_2\text{aq}} \) and \(m_{\text{AlO}_2^-} \); nevertheless, \(m_{\text{Al}_{\text{total}}} \) continues to increase until it reaches a maximum at quartz saturation. The decrease in \(m_{\text{AlO}_2^-} \) also produces a slight increase in pH to 3.72 at kyanite-quartz equilibrium. Silica speciation is a strong function of total dissolved silica; at corundum-kyanite equilibrium, Si is partitioned subequally between monomers (53%) and dimers (47%) on a molar basis. Calculated
m_{Si, total} at kyanite-corundum equilibrium is 0.305 molal, in excellent agreement with the measured Si concentration of 0.308 ± 0.003 molal.

A similar approach can be used to predict speciation at quartz saturation as a function of $m_{Al, total}$ (Fig. 5C). At these conditions, SiO_2,aq and Si_2O_4,aq are constant, but $m_{Al, total}$ and $m_{HAIOS, aq}$ increase sympathetically. The increase in $m_{HAIOS, aq}$ contributes to a slight rise in total dissolved silica that is not resolvable on the scale of Fig. 5C. A small pH decrease with $m_{Al, total}$ arises from the increase in m_{Al}.

Implications for Al transport during high-P metamorphism

The formation of Al-Si complexes leads to a substantial increase in Al solubility beyond that predicted if only aluminum hydroxides are considered (Fig. 5A). Figure 5B, C illustrates that Al-Si complexes will host most of the Al in Si-bearing H$_2$O at 700°C, 10 kbar, which results from the large value of K_{12} constrained by the experiments. The molality of HAIOS$_4,aq$ is greater than that of HAIOS$_2,aq$ for all $m_{Si, total} \geq 0.05$. The $m_{Si, total}$ of the equivalence point is well below that of a fluid in equilibrium with a model upper mantle mineral assemblage, including forsterite and enstatite ($m_{Si, total}$ approximately 0.14), suggesting that Al-Si complexes will be the predominant form of dissolved Al in all lower crustal, mantle, and subduction environments, in the absence of other complexing agents.

Although the experiments were conducted at a single P and T, they nevertheless can give some general insight into Al mobility in high- P metasomatic environments. For example, the prediction that Al solubility is greatest at kyanite + quartz equilibrium in the system Al-Si-O-H helps explain the common observation of kyanite + quartz segregations in high- P metamorphic rocks, such as eclogites. Based on the present findings, these features may result from the high Al solubility in Si-bearing fluids, which permits growth of kyanite + quartz from lower fluid volumes than if Si were not present. Extending the results still further, the formation of polymeric speices is favored by increasing pressure in the system Si-O-H (Newton &
increase in Al-Si complex or complexes. Additional experiments at a range of buffered pH values are clearly required to test stoichiometric Al/Si ratio of the complexes. The calculations described above can be repeated by assuming different Al:Si ratios. Figure 6 shows that for arbitrary Al:Si ratios of 1:2, 1:1, and 2:1, the Al content of kyanite + quartz-saturated H₂O may be significantly greater or less than predicted for Al/Si = 1. But the figure also shows that the increase in mₐl,total with Si content will have different slopes and curvatures.

Future experimental study of corundum solubility as a function of Si content can provide the data to establish the dependence of corundum solubility on dissolved Si to rigorously determine the average stoichiometry of Al-Si complexes. It is important to note, however, that the solution may contain Al-Si complexes of different stoichiometries, and the average Al/Si ratio may itself vary with total dissolved silica. Nevertheless, the approach developed here can be used with such measurements to determine the average ratio as a function aqueous Si content.

ACKNOWLEDGEMENTS
This work was supported by NSF EAR-0337170. I thank S. Boettcher for assistance with the experiments, and S. Wong for help with SEM petrography. The manuscript was improved by critical comments by R. Newton and W. Dollase, and reviewers S. Wood and B. Yardley.

REFERENCES

Walther JV (1997) Experimental determination and interpretation of the solubility of corundum in H$_2$O between 350 and 600°C from 0.5 to 2.2 kbar. *Geochimica et Cosmochimica Acta*, 61, 4955–64.

Walther JV (2001) Experimental determination and analysis of the solubility of corundum in 0.1 and 0.5 m NaCl solutions between 400 and 600°C. *Geochimica et Cosmochimica Acta*, 65, 2843–51.

