Evidence for SiO$_2$-NaCl complexing in H$_2$O-NaCl solutions at high pressure and temperature

R. C. NEWTON AND C. E. MANNING
Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA

ABSTRACT
Experimental studies reveal complex dissolution behavior of quartz in aqueous NaCl solutions at high temperature and pressure, involving variation from salting-in to salting-out that changes with temperature, pressure, and salt concentration. The behavior is not explainable by traditional electrostatic theory. An alternative hypothesis appeals to complexing of SiO$_2$ with NaCl and can explain the observations. However, the hypothesis of complexing, as previously applied, is inadequate in several respects: it neglects polymerization of solute silica, regards the SiO$_2$-NaCl hybrid complex(es) as anhydrous, which seems unlikely, and invokes an incorrect stoichiometry of the hydrated silica monomer, now known to be Si(OH)$_4$·2H$_2$O. These neglected features can be incorporated into the complexing model in a revised formulation based on a simple thermodynamic analysis using existing quartz solubility data. The analysis leads to a quasi-ideal solution model with silica monomers, dimers, and two distinct hydrous SiO$_2$-NaCl hybrid complexes with overall NaCl:H$_2$O = 1:6, one Na-bearing and one Cl-bearing. Their (equal) molar concentrations (X_{hc}) are governed by a pressure- and temperature-dependent equilibrium constant, $K_{hc} = X_{hc}^2/(a_{NaCl}a_{H_2O})$, where a_{NaCl} and a_{H_2O} are the respective activities of the solvent components. The stability of the hybrid complexes (i.e., their concentration) is very sensitive to H$_2$O activity. The entire set of experimental quartz-solubility data at 700°C, 1–15 kbar, is reproduced with high fidelity by the expression $\log K_{hc} = -4.585 + 0.2691P - 2.023 \times 10^{-3}P^2$ (P is pressure in kbar), including the transition from low-pressure salting-in to high pressure salting-out. The results indicate that hybrid SiO$_2$-NaCl complexes are the main hosts for dissolved silica at NaCl concentrations greater than 6 wt%, which are likely common in crustal fluids. At higher temperatures, approaching the critical end point in the system SiO$_2$-H$_2$O, the model becomes progressively inaccurate, probably because polymers higher than the dimer become significant as SiO$_2$ concentration increases.

Key words: aqueous geochemistry, brines, crustal fluids, quartz solubility, thermodynamic models

INTRODUCTION
Silica is a major solute in crustal fluids, but its concentration depends strongly on fluid composition. At quartz saturation, silica solubility in H$_2$O increases strongly with rising temperature (T) and pressure (P) (Kennedy 1950; Morey & Hesselgesser 1951; Wyart & Sabatier 1955; Khitarov 1956; Kennedy et al. 1962; Weil & Fyfe 1964; Anderson & Burnham 1965; Hemley et al. 1980; Walther & Orville 1983; Manning 1994; Newton & Manning 2008; Hunt & Manning 2012). At fixed P and T, addition of CO$_2$ causes solubility to decline (Novgorodov 1975, 1977; Walther & Orville 1983; Newton & Manning 2000, 2009). However, more complex behavior is observed in alkali- or alkaline-earth halides. For example, in H$_2$O-NaCl solutions at low P and moderate to high T, quartz solubility initially increases as NaCl is added to H$_2$O (i.e., silica ‘salts in’) (Fournier et al. 1982; Saccocia & Seyfried 1990; Xie & Walther 1993; Newton & Manning 2000; Shmulovich et al. 2006). A maximum is reached at an intermediate NaCl mole fraction (X_{NaCl}), and then solubility declines (silica ‘salts out’). The extent of the initial salting-in diminishes as P increases, until at high P, quartz solubility declines exponentially with rising X_{NaCl}.
halide solutions, intriguing variations exist: CaCl₂ solutions show no quartz solubility enhancement at any P, whereas CsCl solutions show initial enhancement followed by salting-out at high salinity at all P up to 9 kbar (Shmulovich et al. 2006). The behavior of quartz solubility in H₂O-salt solutions has defied clear theoretical understanding, which limits our ability to develop robust thermodynamic models for the transport of one of the most important solutes in crustal fluids.

Two general approaches have been used to model quartz solubility in salt solutions. The first is based on Sétchénov’s (1892) treatment of the solubility of organic compounds in salty fluids (Shmulovich et al. 2006). The other emphasizes reactions of quartz with solvent constituents to form soluble SiO₂-NaCl-(H₂O) complexes (Evans 2007). Comparison and critique of the merits and shortcomings of these approaches are given in Newton & Manning (2010).

The Sétchénov-type formulation provides a mathematically useful description of the experimental data, but is lacking in theoretical underpinnings. In particular, there is no input of pertinent thermodynamic properties such as standard-state properties or measured activities of H₂O and saline components, data which exist for NaCl and KCl solutions. The latter restriction ignores the fact that the P-induced transition from salting-in to salting-out coincides with the P-induced decrease in H₂O activity at about 4 kbar, attributed to the ionization of NaCl (Aranovich & Newton 1996). This change in the solvent would be expected to have a major effect on the solubility of minerals. Also, the formulation gives no account of speciation or polymerization of solute SiO₂.

The alternative approach of Evans (2007) is based on solute-solvent interaction and provides a more intuitive basis for understanding quartz solubility behavior. In her model, quartz solubility is governed by a set of homogeneous and heterogeneous equilibria involving quartz and aqueous species. A key feature is the formation of one or more hybrid SiO₂-NaCl complexes of the general form SiO₂–nNaCl·yH₂O. If such a solute-solute interaction governs quartz dissolution in H₂O-NaCl solutions, then P-induced changes in the activities of the solute components, such as the rather sudden decreases in H₂O and NaCl activities near 4 kbar (Aranovich & Newton 1996), would affect the stability of the hybrid complex(es) and therefore might account for the pattern of quartz solubility as a function of P, T, and NaCl mole fraction. Evans (2007) was able to fit Newton & Manning’s (2000) quartz solubility data reasonably well over a broad range of P and T with suitable choices of the coefficients x and y. She chose the proportions x = 1/2 and y = 0 for a single hybrid complex, with the SiO₂ species in the NaCl-free system assumed to consist entirely of Si(OH)₄⁺·H₂O.

The formulation of Evans (2007) is advantageous due to its flexibility and rigorous formalism. However, for convenience in developing her model, Evans (2007) neglected silica polymerization and assumed that any hybrid complex was anhydrous. In addition, the stoichiometry of H₂O solvation of the silica monomer is now known to be constant at Si(OH)₂⁺·2H₂O over a wide range of P and T (Newton & Manning 2009). The purpose of the present work is to show that these neglected features can be incorporated into an Evans-type model using existing quartz solubility data and that they lead to a more comprehensive description of quartz solubility in NaCl-H₂O solutions at high T and P, with consistent definition of possible solute species.

The Model

Over a range of crustal P and T, the silica monomer in H₂O has the stoichiometry Si(OH)₄⁺·2H₂O (Walther & Orville 1983; Newton & Manning 2009). The concentration of the monomer in quartz-saturated solutions of decreasing H₂O activity is controlled by the reaction:

Quartz + 4H₂O = Si(OH)₄⁺·2H₂O

with an equilibrium constant:

\[K_{aq} = \frac{a_{aq}}{a_{H₂O}^4} \]

where the subscripts q and m denote quartz and the monomer, and \(a_{aq} \) and \(a_{H₂O} \) are, respectively, the activities of the monomer and H₂O. With increasing concentration of SiO₂, increasing amounts of the silica dimer are produced:

\[2\text{Si(OH)}_4^+ \cdot 2\text{H}_2\text{O} = \text{Si}_2\text{O(OH)}_4^+ \cdot 4\text{H}_2\text{O} + \text{H}_2\text{O} \]

with an equilibrium constant:

\[K_{md} = \frac{a_{d}a_{H₂O}}{a_{aq}^2} \]

where the subscript d denotes the dimer. Newton & Manning (2002, 2003, 2010) used SiO₂ solubility measurements on various silica-buffering assemblages to show that the activities of the monomer and dimer in H₂O can be replaced by their mole fractions with a high degree of consistency; that is, these species mix ideally in H₂O. They formulated \(K_{md} \) as:

\[\log K_{md} = 1.480 + 0.0012T + (0.000119T - 0.1685)P \]

where T is in Kelvin and \(P \) is in kbar. Equations 1–5 demonstrate that any assessment of the importance of hybrid SiO₂-NaCl complexes must account for the silica hydration number and polymerization.
We postulate that there exists in H₂O-NaCl solutions at elevated T and P some species of silica complexed with the solvent components. The postulated complexes coexist with the hydrous silica species (Newton & Manning 2002, 2003, 2009) and could account for the salting-in behavior of quartz solubility in the low pressure range. We also hope to explain the relationship that must exist between the sudden pressure-induced decrease in the activities of NaCl and H₂O that occurs near 0.4 GPa (Aranovich & Newton 1996), and the equally sudden transition from salting-in to salting-out of quartz solubility that occurs in the same pressure range (Newton & Manning 2000). Following Evans (2007), the solute complexes are formed by the reaction:

\[
\text{SiO}_2 + x\text{NaCl} + y\text{H}_2\text{O} = n\text{solute complexes}_{\text{quartz}}
\]

(6)

This general type of reaction has been used to model the solubilities of several different minerals in NaCl solutions at elevated T and P, especially for those minerals that show solubility enhancement by the presence of NaCl (Newton & Manning 2010, and references therein).

Assuming that the ideal solution relation used for the silica polymers holds for the hybrid complexes also, there exists an equilibrium constant \(K_{hc}\) for Eq. 6 involving the concentration of hybrid complexes \(X_{hc}\):

\[
K_{hc} = \frac{x_{hc}^n}{x_{\text{NaCl}}^y x_{\text{H}_2\text{O}}^x}
\]

(7)

\(K_{hc}\) depends on T and P but not on the concentration factors.

The contribution of the postulated hybrid species to the total silica concentration, irrespective of the stoichiometric number of Si they contain, is given by

\[
X_i = X_{hc} + X_m + 2X_d
\]

(8)

where \(X_i\) is the total molar silica concentration, and \(X_m\) and \(X_d\) are the respective monomer and dimer concentrations. Note that Eq. 8 is applicable only where the concentration of higher Si polymers (trimers, etc.) is negligible.

Figure 1 shows the concentration of the hybrid species at 0.2 GPa and 700°C. At these conditions, the activities of H₂O and NaCl are indistinguishable from their mole fractions, \(X_{\text{H}_2\text{O}}\) and \(X_{\text{NaCl}}\) (Aranovich & Newton 1996), and the NaCl is inferred to exist in solution as undissociated molecules. It is evident from Fig. 1 that the solute complex(es) must be substantially hydrous, as there is strong control on the concentration by H₂O activity. The location of the solute maximum, near 15 mol%, suggests that the overall NaCl:H₂O molar ratio of the complexes is 1:6 (Newton & Manning 2010). With increasing salinity, the mole fraction of hybrid complexes drops off sharply, reflecting the strong dependence on H₂O activity.

Assuming that mixing of SiO₂ species, H₂O, and NaCl molecules is ideal and that solute species possess integer stoichiometry, the values of the coefficients \(x, y, \) and \(n\) may be estimated by plotting the numerator of Eq. 7 against the denominator, with trial combinations of integers, and searching for the highest straight-line correlation indicating closest approach to a constant value of \(K_{hc}\). As we are interested mainly in the ratios of the integers, we may take \(x\), the overall stoichiometric coefficient of NaCl in the complex(es), to be unity. Table 1 shows the correlation coefficient \(R^2\) for various combinations of the constants \(y\) and \(n\) at \(x = 1\) in Eq. 7.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(y = 5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.902</td>
<td>0.762</td>
<td>0.499</td>
<td>0.209</td>
</tr>
<tr>
<td>2</td>
<td>0.922</td>
<td>0.998</td>
<td>0.960</td>
<td>0.810</td>
</tr>
<tr>
<td>3</td>
<td>0.902</td>
<td>0.949</td>
<td>0.957</td>
<td>0.910</td>
</tr>
</tbody>
</table>

Data source: 2 kbar, 700°C data of Newton & Manning (2000).

![Figure 1.](image-url)
and 2. This result is strong evidence in favor of dissociation of NaCl in the complexing process. Presumably, two hydrous SiO$_2$ complexes are formed, one with Na and one with Cl.

The predicted contributions of the monomer, dimer, and the hybrid complex(es) to the total dissolved silica are shown in Fig. 3. Hybrid complexes become predominant at $X_{NaCl} > 0.02$. That is, the hybrid SiO$_2$-NaCl complex(es) will be the main host for dissolved silica at all dissolved NaCl concentrations greater than about 6 wt%. This is relatively modest salinity that is common in crustal fluids at elevated P-T conditions (Yardley & Graham 2002).

IDENTIFICATION OF THE HYBRID COMPLEXES

Even if mixing is not strictly ideal, the relationships in Fig. 2 still strongly imply that there are two hybrid complexes formed for every NaCl reacted, which is indeed the ratio preferred by Evans (2007). This result is also consistent with the neutral pH observed in quench fluids (Newton & Manning 2006) because it is likely that any HCl and NaOH liberated during the quenching process will maintain acid–base neutrality.

If fractional molecules are avoided, the derived values of y and n would seem to mean that the NaCl must dissociate in the reaction to form one silica species with Na and one with Cl. Assuming neutral monomeric complexes, a reaction which satisfies these conditions is:

$$2SiO_2 + NaCl + 6H_2O = Si(OH)_4 \cdot H_2O \cdot HCl + Si(OH)_4 \cdot NaOH$$

(9)

The HCl in one complex is postulated to play the same energetic role as a H$_2$O molecule; the other hybrid complex is some very soluble Na silicate. While Eq. 9 is the simplest equilibrium that can be written, it is not unique. For example, two monovalent species of opposite charge, for example Si(OH)$_4$-H$_2$NaO$^+$ and Si(OH)$_4$-H$_2$ClO$^-$, could maintain overall electrical neutrality. An alternative dissolution reaction proposed by Anderson & Burnham (1967) for quartz solubility experiments in KCl-H$_2$O would generate two solute species for each KCl reacted, an alkali silicate, and HCl. This reaction would yield strongly acidic quenched fluids, which seems unlikely in view of the results for NaCl-H$_2$O. Regardless of the identities of the hybrid species, it should be emphasized that the values of x, y, and n implied by the solubility data must be satisfied.

EXTENSION TO HIGHER AND LOWER PRESSURES

The quartz solubility data at 700°C and higher pressures may be analyzed by the same methods. There is ambiguity regarding the mole fractions of species as NaCl begins to dissociate with increasing pressure. Following Evans (2007), we take mole fractions among all molecules and ions, so that the mole fractions depend on the degree of dissociation of NaCl. The activity–concentration relations
of Aranovich & Newton (1996) give, to a first approximation, the degree of dissociation of NaCl, modeled by the parameter α, in the solutions:

$$a_{H_2O} = \frac{X_{H_2O}}{1 + \alpha X_{NaCl}}$$

$$a_{NaCl} = \left(\frac{1 + \alpha X_{NaCl}}{1 + \alpha X_{NaCl}}\right)^{(1+\alpha)}$$

(10)

If there were ideal mixing among H$_2$O, undissociated NaCl, Na$^+$ and Cl$^-$, the dissociation parameter α should run from zero for undissociated NaCl to unity for complete dissociation. In fact, Aranovich & Newton (1996) found that α becomes larger than unity at $P > 1.0$ GPa, exceeding the theoretical limit for complete dissociation. This is a defect of the Aranovich & Newton (1996) theoretical treatment of their activity–concentration measurements, according to which the dissociation factor, α, is a function of only P and T, but not salinity. In the present discussion, the dissociation factor is, for purposes of calculating mole fractions, limited to the range $1 \geq \alpha \geq 0$, although, in order to reproduce the activity data correctly, α has to be 1.22 at 10 kbar and 1.49 at 15 kbar. In spite of this inconsistency, the formulation of K_{hc} in Eq. 9 with $n = 2$, $x = 1$, $y = 6$ appears to work well with the solubility data of Newton & Manning (2000), as shown in Fig. 4. The model reproduces the data of Newton & Manning (2000) to within 5% relative at 2–15 kbar and from pure H$_2$O to halite saturation.

Values of K_{hc} increase with rising P at 700°C. A quadratic fit to calculated log K_{hc} values yields

$$\log K_{hc} = -4.585 + 0.2691 P - 2.023 \times 10^{-3} P^2$$

(11)

(P in kbar, $R^2 = 0.9998$), shown in Fig. 5. The model predicts that at constant X_{NaCl} and quartz saturation, the fraction of dissolved silica in hybrid complexes (F_{hc}) decreases with increasing P at low X_{NaCl}; however, at high X_{NaCl}, F_{hc} is roughly independent of P over the investigated range. As expected, F_{hc} increases with X_{NaCl} at all P.

A test of the extrapolability of the model may be made with reference to the data of Xie & Walther (1993) at 1 kbar and low salinity. Their data in the range 425–575°C and $m_{NaCl} = 0.83$ ($X_{NaCl} = 0.0147$) were extrapolated with small uncertainty to 700°C by a least-squares fit of log m_{SiO2} versus $1/T$ (Fig. 6), yielding $X_c = 0.00152$ under these conditions. Extrapolating our trend of log K_{hc} versus P at 700°C in Fig. 5 to 1 kbar yields $X_c = 0.00148$ at $m_{NaCl} = 0.83$, in nearly perfect agreement with extrapolation of the Xie & Walther (1993) data.

Several features are of interest in the model results presented in Fig. 4. The 1 kbar quartz solubilities are predicted to flatten out and become nearly invariant over a wide range of salt concentration, 0.05 < X_{NaCl} < 0.30.

This behavior is testable by further solubility experiments. It seems doubtful that the high SiO$_2$ solubility in a fused salt-like mixture of 50 wt. % NaCl could be simply the

© 2015 John Wiley & Sons Ltd, *Geofluids*, 16, 342–348
result of electrostatic modification of the H$_2$O component, as Xie & Walther (1993) attempted to show for their data at low salinity; rather, it implies a substantial reaction with the solvent resulting in stable hybrid species. The trend at 4.35 kbar is predicted to have a very small maximum at low salinity, although the experimental data are not sufficient to show this. The twenty-parameter numerical fit to all of the experimental data of Newton & Manning (2000) does, in fact, yield a small maximum at 4 kbar and 700°C (their Fig. 5a). The solubility curves converge strongly at high salinity such that, at X$_{NaCl} > 0.4$, there is little P effect on the SiO$_2$ solubility. Finally, the higher P fits are better if the low salinity points are omitted from the regressions. This is to be expected because such fluids are highly ionized so that the assumption of ideal mixing may be inappropriate, and/or because more extensive polymerization of the hybrid complexes is likely at high SiO$_2$ concentration.

The latter point is illustrated at 800°C and 10 kbar, where Newton & Manning (2000) have the most comprehensive coverage (Fig. 7). The fit is acceptable if all of the solubility data are included in the regression, but if the low-salinity data are excluded, the fit to the rest of the data is much better (Fig. 7). Again, this behavior probably reflects the inadequacy of the model at high SiO$_2$ concentrations. At 850 and 900°C and 10 kbar, no good correlations could be made using $n = 2$, $x = 1$, and $y = 6$. This is likely a consequence of more extensive polymerization of silica species at the higher concentrations characteristic of these conditions (Cruz & Manning 2015).

CONCLUSIONS

The present analysis improves on the treatment of Evans (2007) by adopting an updated silica hydration number, using measured values of the activities of H$_2$O and NaCl as input, and by allowing for polymerization of the silica and the possibility of hydrous solute species. The analysis shows that the concept of hybrid SiO$_2$-NaCl-H$_2$O complexes leads to a natural interpretation of the salting-in to salting-out transition with increasing salinity at low pressure, and also the lapse of the salting-in effect at pressures above about 4 kbar, where ionization of aqueous NaCl becomes important. The inferred hybrid complexes must be substantially hydrous. Assuming a quasi-ideal solution model of SiO$_2$ complexes, H$_2$O molecules, and undissociated NaCl molecules at low pressure, the solubility data strongly favor a model in which two complexes are formed for each NaCl reacted, one complex Na-bearing and the other Cl-bearing. The inference of separate Na-silica and Cl-silica complexes is upheld by the observed pH neutrality of quenched solutions in NaCl-H$_2$O quartz solubility experiments (Newton & Manning 2006). With increasing temperature, pressure, and SiO$_2$ concentration, which becomes very high at low salinity, the simple mixing model becomes inadequate, indicating that mixing mole fractions and activities are uncertain because of NaCl dissociation.
and/or polymerization of SiO₂, possibly including the hybrid complexes.

ACKNOWLEDGEMENTS

We thank K. Evans and B. Yardley for reviews that led to the substantial improvement of the manuscript. The research was supported by NSF grants EAR 1049901 and 1347987.

REFERENCES

Cruz MF, Manning CE (2015) Experimental determination of quartz solubility and melting in the system SiO₂–H₂O–NaCl at 15–20 kbar and 900–1100°C: implications for silica polymerization and formation of supercritical fluids. Contributions to Mineralogy and Petrology, 170, 35.
Kennedy GC (1950) A portion of the system silica-water. Economic Geology, 45, 629–53.
Khitarov NI (1956) The 400°C isotherm for the system H₂O–SiO₂ at pressures up to 2,000 kg/cm². Geochemistry, 1956, 55–61.
Morey GW, Hesselgesser JM (1951) The solubility of some minerals in superheated steam at high pressures. Economic Geology, 46, 821–35.
CONTENTS

211 Phase-field modeling of epitaxial growth of polycrystalline quartz veins in hydrothermal experiments
F. Wendler, A. Okamoto and P. Blum

231 Pore pressure evolution and fluid flow during visco-elastic single-layer buckle folding
A. Eckert, X. Liu and P. Connolly

249 Post-CO2 injection alteration of the pore network and intrinsic permeability tensor for a Permo-Triassic sandstone

264 Klinkenberg gas slippage measurements as a means for shale pore structure characterization
E.A. Letham and R.M. Bustin

279 Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: model development, verification, and illustrative example
S.A. Bea, U.K. Mayer and K.T.B. MacQuarrie

301 Overpressure in the Malay Basin and prediction methods
I. Ahmed Satti, W.I. Wan Yusoff and D. Ghosh

314 Modelling the Lost City hydrothermal field: influence of topography and permeability structure
S.S. Titarenko and A.M. McCaig

329 Geometry-coupled reactive fluid transport at the fracture scale: application to CO2 geologic storage
S. Kim and J.C. Santamarina

342 Evidence for SiO2-NaCl complexing in H2O-NaCl solutions at high pressure and temperature
R.C. Newton and C.E. Manning

349 Pyrophyllite formation in the thermal aureole of a hydrothermal system in the Lower Saxony Basin, Germany
P. Will, V. Lüders, K. Wemmer and H.A. Gilg