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[1] A cooling viscoelastic ice shell overlying an ocean develops stresses due to two
effects: thermal contraction of the ice due to cooling and the expansion of the shell due to
the ice-water volume change. The former effect generates near-surface compression and
deeper extension; the second effect generates extension only. In both cases, stresses are
smaller at depth due to viscous creep. The resulting combined stresses are extensional
except at shallow (<1 km) depths in thin ice shells. For ice shells thicker than 45 km,
stresses are extensional throughout. The extensional stresses exceed 10 MPa for shells
thicker than 20 km and thus dominate all other likely sources of stress as long as shell
cooling occurs. The dominantly extensional nature of the stresses may help to explain the
puzzling lack of compression observed on Europa and other large icy satellites. However,
after 100 Myr of conductive cooling the maximum theoretical elastic strains for Europa are
�0.35%, which are probably insufficient to explain the total amount of observed
extension. INDEX TERMS: 5475 Planetology: Solid Surface Planets: Tectonics (8149); 5455
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1. Introduction

[2] The large icy satellites of Jupiter, Europa, Ganymede
and Callisto, are all thought to possess oceans beneath an
ice shell [Spohn and Schubert, 2003]. This ice shell is a few
to a few tens of km thick on Europa [Pappalardo et al.,
1998; Greenberg et al., 2000; Schenk, 2002], and �100 km
thick on Ganymede and Callisto [Kivelson et al., 2002;
Zimmer et al., 2000]. The thickness of the ice shells is
determined by the balance between heat production, from
radiogenic elements in the silicate interior and possible
tidal deformation, and conductive or convective heat loss
[Hussmann et al., 2002]. Radiogenic heat production decays
monotonically with time; tidal heat production may fluctu-
ate owing to feedbacks between the dissipation rate and the
internal structure of the satellite [Hussmann and Spohn,
2004]. Thus all three Galilean satellites are likely to have
experienced episodes during which the ice shell cooled and
thickened with time. This paper will explore the consequen-
ces of such cooling on the deformation histories of these
satellites. The key result is that near-surface, predominantly
extensional stresses of several 10’s of MPa will be gener-
ated as a floating ice shell thickens; the stresses are confined
to a relatively shallow (few km) level because viscous
relaxation reduces the stresses at greater depths, where ice
viscosity is low.

[3] The generation of large, extensional stresses is im-
portant for two reasons. Firstly, this mechanism may help to
explain the long-standing puzzle that abundant evidence of
extension, but almost none of compression, is observed on
Ganymede and Europa [Squyres and Croft, 1986]. Secondly,
the magnitude of the predicted stresses exceeds both diurnal
tidal stresses and likely stresses due to nonsynchronous
rotation, and thus may be a major driver of icy satellite
deformation.
[4] The above issues are discussed in more detail with

respect to Europa in section 5. Section 2 discusses the
theory, and section 3 presents example results. Section 4
analyses the simplifications and uncertainties in the model.

2. Theory

[5] The tectonic effects of cooling spherical silicate
bodies have been investigated for more than a century. In
an important paper, Darwin [1887] showed that a cooling
Earth would experience compression at the surface and
extension below a depth which increases in a linear fashion
with time. More recently, Turcotte [1983] demonstrated that
extensional stresses can be generated at the surface of a
cooling planet if contraction in the deep interior is small.
Many studies of icy satellites have focused on the tectonic
effects of differentiation [Squyres and Croft, 1986; Mueller
and McKinnon, 1988; Kirk and Stevenson, 1987; Cassen et
al., 1982]. Cassen et al. [1979] concluded that freezing of
a 100 km thick liquid layer on Europa could lead to
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1% global expansion, although Squyres [1980] concluded
that such freezing was unlikely to be an important source of
stress for Ganymede or Callisto. McKinnon [1981] applied
the consequences of expansion of a spherical cap to tectonic
features on Ganymede. Both Zuber and Parmentier [1984]
and Hillier and Squyres [1991] investigated the viscoelastic
deformation arising from solid satellite thermal evolution;
the latter paper forms the starting point for the analysis
presented here.
[6] This analysis differs in two main ways from the

majority of papers referred to above. Firstly, it is carried
out for a spherical shell, rather than for a solid sphere,
because of the subsurface oceans in the Galilean satellites.
Secondly, it takes into account the large volume change
which water undergoes on freezing, an effect which can
generally be neglected for the analogous silicate case. On
the other hand, it neglects the high pressure ice phase
changes investigated by Hillier and Squyres [1991] and is
thus appropriate to relatively thin (<150 km) ice shells.
[7] Consider an ice shell which overlies an ocean and

which is cooling, and thus thickening, with time. For a
purely conductive case (i.e., neglecting convection or inter-
nal heating) the shell thickness tc and temperature structure
are given by the Stefan solution [Turcotte and Schubert,
2002]. A shell which has thickened by an amount Dtc will
generate a radial outward motion (uplift) of the shell surface
u, where

u ¼ Dtc
Dr
r

f

1þ f Dr=rð Þ ; f ¼ 1� 2tc

Rs

� �
; ð1Þ

Rs is the satellite radius, tc is the initial shell thickness, r is
the density of ice and Dr is the density contrast between ice
and water. This outward motion will be referred to below as
the volume change effect. Note that this equation reduces to
the usual isostatic case [Turcotte and Schubert, 2002] for
tc � Rs (f � 1).
[8] If the ice behaves as an elastic medium, then the

outward motion of the shell will give rise to extensional
elastic strains [Timoshenko and Goodier, 1970]. At the
same time, because the ice is cooling, it will tend to
contract (the thermal contraction effect). This contraction
can lead to either compression or extension, depending on
the boundary conditions. Both of these effects will be
investigated below; for convenience, they will initially be
treated separately, though in practice both will be occur-
ring. In either case, the ice will behave in an elastic fashion
at low temperatures, but at higher temperatures the stresses
generated are likely to relax through viscous creep. Since
this creep can potentially limit the maximum stresses and
elastic strains generated, it is important to take viscous
deformation into account.

2.1. Thermal Contraction Effect

[9] The thermal contraction effect was investigated for
solid icy satellites by Hillier and Squyres [1991]. Their
analysis applied to spheres, while here we will adapt it to ice
shells. Also, these authors examined bodies which increased
in temperature with time (generating predominantly exten-
sional stresses), while here we are concerned with cooling
bodies. We also adopt the sign convention of Timoshenko
and Goodier [1970] in which extension of an individual

parcel of ice is caused by an increase in temperature, and is
positive (compression is negative).
[10] For a viscoelastic medium, such as ice, the stress-

strain rate relation is given by

d�

dt
¼ 1

E

ds
dt

þ s
2m

; ð2Þ

where t is time, � is strain, s is stress, E is Young’s modulus
and m is (temperature-dependent) viscosity [Hillier and
Squyres, 1991]. The characteristic timescale of the system is
given by the Maxwell time, m/E; at times much shorter than
this the material behaves in an elastic fashion, while over
much longer timescales it behaves as a viscous medium.
[11] Hillier and Squyres [1991] applied this relationship

and the equations of deformation in an elastic shell
[Timoshenko and Goodier, 1970] to obtain expressions for
the rate of change of stresses in the spherical icy satellite.
These expressions may be adapted to a cooling ice shell
by applying the bottom boundary condition to the (time-
dependent) base of the ice shell, rather than the centre of the
satellite. The resulting equation is as follows:

1� nð Þ
2E

dsr
dt

¼ �
Z r

Ri

1

12m
dsr
dr

dr þ 1

r3

Z r

Ri

d

dt
r2adr þ r3 � R3

i

r3F

� �

	
Z Rs

Ri

1

12m
dsr
dr

� 1

R3
s

Z Rs

Ri

d

dt
r2adr

� �
: ð3Þ

[12] Here

F ¼ R3
s � R3

i

R3
s

; ð4Þ

n is the Poisson’s ratio, sr is the radial stress, r is the radial
distance outward, Ri(t) is the radial distance to the base of
the shell and a is given by alDT, where al is the linear
thermal expansivity and DT is the change in temperature
from the initial temperature at this particular depth. The
boundary conditions are zero radial stress at the top
and bottom of the shell. This equation simplifies to
equation (A18) of Hillier and Squyres [1991] for Ri = 0
(F = 1), as required.
[13] Given the radial stress sr, the tangential stress st may

be obtained from

st ¼ sr þ
r

2

dsr
dr

ð5Þ

and the total tangential strain taken up by nonviscous
deformation estimated by

�t ¼
1� nð Þ
E

st : ð6Þ

[14] If the viscosity is large, equation (3) shows that the
viscous relaxation terms (which involve m) are unimportant.
In this case, the radial stress is proportional to the total
temperature change and equation (3) reduces to that for the
thermal stresses in a purely elastic shell (see below). The
viscous terms are more important toward the base of the
shell (where m is lower) and act to reduce the radial stress.
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[15] Equation (3) shows that the rate of strain increase is
governed by the rate of change of temperature dT/dt. For a
purely conductive ice shell which is solidifying, this rate of
change is given by the Stefan solution [Turcotte and
Schubert, 2002]

dT

dt
¼ � Tb � Tsð Þ

erfl1

exp �y2=4kt
� � y

2 pkt3ð Þ1=2
; ð7Þ

where l1 is a constant depending on the thermal properties
and latent heat of the material, y is depth below the surface
and k is thermal diffusivity. Here we are assuming a Cartesian
geometry, which is appropriate for shells which are much
thinner than the planetary radius. The surface and base of the
ice shell are at temperatures Ts and Tb, respectively.
[16] Equation (3) allows sr to be calculated as a function

of r and time, given the changing temperature structure of
the ice shell. As noted by Hillier and Squyres [1991], a
problem with equation (3) is that the computational time
step is set by the Maxwell time, which may be very much
smaller than thickening timescale for the ice shell. This
problem can be reduced by assuming that all stresses below
a particular isotherm Trel are relaxed instantaneously. This
assumption is implemented simply by defining the location
of the effective base of the shell (Ri(t)) at a temperature Trel
rather than the melting temperature Tb. In practice, this
modification has no effect on the results. The numerical
implementation of equation (3), and the verification of this
approach, is discussed further in Appendix B.

2.2. Volume Change Effect

[17] The volume change effect may be calculated using a
similar approach to that ofHillier and Squyres [1991], but this
time the top boundary condition is that the uplift u(t) is
specified (equation (1)). The derivation of the resulting stress
is somewhat more complicated, and is given in Appendix A.
The resulting rate of change of radial stress is given by

1� nð Þ
2E

dsr
dt

¼ �
Z r

Ri

1

12m
dsr
dr

dr þ r3 � R3
i

r3Q

� �

	 1

Rs

du

dt
þ n
E

dsr
dt

� �
r¼Rs

þ Rs

12

1

m
dsr
dr

� �
r¼Rs

"

þ 2

Z Rs

Ri

1

12m
dsr
dr

dr

#
; ð8Þ

where Q is a constant �3. As with equation (3), there are
both viscous and elastic terms. The viscous terms are not
quite identical to those in equation (3) because of the
differing top boundary condition. For the elastic terms, the
stresses now depend on the amount of uplift u. This
equation may be implemented in a similar manner to that of
equation (3). One additional complication is that the term
dsr/dt appears on both sides of the equation; the procedure
is to first solve for this term at r = Rs, then use this value to
obtain dsr/dt at other depths. Further details of the
implementation are given in Appendix B.

2.3. Parameters

[18] Although the elastic parameters of ice in the labora-
tory are well-determined [Gammon et al., 1983], the bulk

properties of fractured ice shells may be rather different
[Nimmo, 2004]. Following Hillier and Squyres [1991], we
will adopt E = 5 GPa and n = 0.3, and will investigate the
effects of uncertainties in the former below.
[19] The rheology of ice is complicated, involving several

different deformation mechanisms, some of which are non-
Newtonian [Goldsby and Kohlstedt, 2001]. However, as
discussed in section 4, the exact details of the ice rheology
have very little effect on the final results. We will therefore
assume a simplified ice rheology, with a Newtonian viscos-
ity m(T) that takes the form

m Tð Þ ¼ mb exp
Q Tb � Tð Þ

RTbT

� �
; ð9Þ

where T is temperature, mb is the reference viscosity at the
base of the ice shell, temperature Tb, Q is the activation
energy and R is the gas constant. Typical ice viscosities near
the melting point are in the range 1013–1015 Pa s
[Pappalardo et al., 1998]. We will adopt a relatively high
viscosity of 1015 Pa s at 270 K, and show in section 4 that
reasonable variations in this parameter have no effect on the
near-surface stresses. The activation energy is assumed to be
40 kJ/mol, though this may be reduced if the non-
Newtonian nature of ice is important [Goldsby and
Kohlstedt, 2001]. We also assume that the effective base
of the elastic ice shell is determined by Trel = 180 K, and
that the Stefan parameter l1 = 0.65. The parameters adopted
are summarized in Table 1.

3. Results

[20] Figure 1 shows the results of the thermal contraction
model, starting from an initial shell thickness of 2.4 km (see
Appendix B). The stress profile as a function of time is
shown in Figure 1a, and demonstrates that stresses are
compressional at the surface, and extensional at depth.
This result is similar to that obtained by Darwin [1887],
and for a similar reason. At shallow depths, deeper layers
are cooling more rapidly (equation (7)), contracting and
thus putting the layers above them into compression. This
effect is complicated by viscous relaxation in the warmer
ice, which confines the stresses to shallower depths than
expected from the purely elastic Darwin model. The
tangential stresses at the surface are always compressional,

Table 1. Nominal Parameters Adopted

Variable Value Units

Ts 100 K
Trel 180 K
k 10�6 m2 s�1

n 0.3 -
r 1000 kg m�3

Q 40 kJ/mol
Cp 2100 J kg�1 K�1

Tb 270 K
Rs 1500 km
E 5 GPa
al 10�4 K�1

Dr 100 kg m�3

mb 1015 Pa s
g 1.3 m s�2
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and the radial stresses are several orders of magnitude
smaller.
[21] For a purely elastic thin shell, the maximum tan-

gential stresses are given by [Timoshenko and Goodier,
1970]

st ¼ 
EalDTmax

2 1� nð Þ ; ð10Þ

where DTmax is the maximum change in temperature (this
expression may also be derived from equation (3) in the
limit of infinite viscosity). The surface tangential stresses
shown in Figure 1a are comparable to the value of 29 MPa
expected from equation (10) (DTmax = 80 K), indicating that

viscous relaxation is a relatively minor effect. Using
progressively higher reference viscosities results in stresses
which approach those given by equation (10).
[22] Figure 1b shows the evolution of stresses at partic-

ular depths in the ice shell with time, and the envelope of
maximum and minimum stresses. As is evident from
Figure 1a, at any particular depth stresses are likely to start
in extension and move to compression as the shell thickens.
This is the behaviour shown at 1 km depth; material at 3 km
and 5 km depth has yet to experience compression. The
maximum extensional stresses actually begin to decrease
with time, owing to viscous relaxation in the warm ice. The
maximum compressional stresses show less of such an
effect because viscous relaxation is slower at cold, near-

Figure 1. (a) Profiles of tangential stress against depth at different times, caused by the thermal
contraction effect (equation (3)). Dashed lines are temperature (right-hand scale) calculated from Stefan
solution; numbers are time (t) in Myr. Solid lines are tangential stresses, calculated at same times as for
temperature profiles. Elastic strains are calculated from stresses using equation (6). The Young’s modulus
is 5 GPa and reference viscosity 1015 Pa s; other parameters given in Table 1. (b) Tangential stresses at
different depths as a function of time. Crosses give the maximum and minimum values; note the changing
time step as the shell thickens. Shell thickness calculated as a function of time using the Stefan solution
with l1 = 0.65.
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surface temperatures. A general conclusion of this model is
that, except for a thin near-surface layer, extensional stresses
are likely to dominate.
[23] The magnitude of these extensional stresses is lim-

ited by viscous relaxation, and in Figure 1 they do not
exceed 4 MPa. The near-surface compressional stresses are
larger, because viscous relaxation is less important at colder
temperatures, and approach �20 MPa. The elastic strains
implied by these stresses (equation (6)) are 0.056% and
�0.28%, respectively. Note that these strains are indepen-
dent of the value of E assumed.
[24] Figure 2 shows the results of the volume change

model. Figure 2a shows the evolution of the tangential
stress profile with time. The surface tangential stress is that
expected for a purely elastic shell (equation (A8)); stresses
at all depths are tensional, because the outer elastic portion
of the shell is moving outward. The stresses, however,
decrease with increasing depth, because the warmer ice
allows more viscous relaxation of the stresses. After 90 Myr,
stresses have relaxed at depths exceeding about 10 km (T �
125 K); this relaxation behaviour is identical to that seen in
Figure 1a. At 125 K, the viscosity of ice is about 1024 Pa s
and the material has a Maxwell time of �6 Myr. Thus,

after O(10) Maxwell times, the material is behaving in a
predominantly viscous fashion. This result is similar to
that of Mancktelow [1999], who found that viscoelastic
materials act in a fully viscous fashion at times greater than
100 Maxwell times. For the nominal parameters, ice at the
surface has a viscosity of 1028 Pa s and a Maxwell time of
�80 Gyr. It is therefore clear that near-surface ice is
unlikely to behave in a viscous fashion for any reasonable
timescales and material parameters.
[25] Figure 2b shows the evolution of stress at different

depths within the ice shell from the volume change effect.
As expected, the stresses are maximized at the surface, and
decrease with depth (where viscous relaxation is more
important). The rate of increase in surface stress with time
is governed by the rate of shell thickening, which in this
case is simply proportional to t�1/2. The maximum stresses
and corresponding strains after 100 Myr of cooling are
comparable in magnitude to those in Figure 1b. Because the
rate of increase of stress is decreasing, viscous relaxation
will propagate to progressively shallower depths as time
increases. However, as noted above, the effective viscosity
of near-surface ice is so high that it will behave elastically
essentially indefinitely.

Figure 2. As for Figure 1, but calculating the stresses from the volume change effect (equation (16)).
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[26] Figures 1 and 2 show some similarities, in particular
stress relaxation with depth. However, the resulting stress
distributions are quite different. In the thermal contraction
case, the surface stresses are compressional, while in the
volume change case, they are extensional throughout. The
time evolution of the stresses is also different. The surface
tangential stresses in Figure 1 approach their maximum at
early times, and do not vary much thereafter, while the
surface stresses in Figure 2 increase continually.
[27] The principle of superposition allows elastic stress

fields to be added [Timoshenko and Goodier, 1970]. No
such principle exists for viscoelastic materials, but at near-
surface temperatures, where the bulk of the deformation is
elastic, the combined effects of thermal contraction and
volume change will be closely approximated by summing
the two stress contributions. Figure 3 shows the effect of
carrying out this summation. Figure 3a shows that, except at
early times and depths <1 km, the summed stresses are
extensional and closely resemble the volume-change stress
distribution (Figure 2a). Figure 3b shows how the combined

stresses at different depths vary with time and demonstrates
that even at depths as shallow as 1 km, the combined
stresses are always extensional. At times exceeding
50 Myr (shell thickness 45 km), stresses are extensional at
all depths.
[28] As a final point, it should be noted that equations (3)

and (8) can equally well be applied to ice shells which are
heating up and thinning. The results will be opposite to
those presented here for cooling, with compression domi-
nating except at shallow depths at early times.

4. Complications and Uncertainties

[29] Figures 1–3 neglect several likely complications in
ice shell behaviour. Perhaps the most important is the fact
that the temperature profile in the cooling shell may not
reflect that of the simple Stefan solution. Tidal dissipation,
if present in the shell, will move the isotherms closer to the
surface and delay the rate of cooling. Both effects will favor
viscous over elastic deformation. However, near-surface

Figure 3. (a) Stress-depth profiles at different times (t) obtained by summing stresses in Figures 1a
and 2a. Unlabeled profiles are at times 0.8 Myr, 1.6 Myr, and 6.4 Myr. (b) Evolution of stresses at
different depths obtained by summing stresses in Figures 1b and 2b. Positive stresses are extensional.
Note that entire shell is in extension after 50 Myr.
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temperatures are so cold that viscous relaxation is still likely
to be minor. Thus the main effect of tidal heating is that the
timescale to reach a particular shell thickness will be longer
than that for the purely conductive case. However, the near-
surface stress distribution characteristic of a particular shell
thickness will not be strongly affected by the time it takes
to reach this shell thickness, because the Maxwell time
of near-surface ice is long compared to likely cooling
timescales.
[30] A more serious modeling problem arises if convec-

tion initiates within the ice shell. Currently, it is not clear
what minimum shell thickness is required to initiate con-
vection; realistic, non-Newtonian ice viscosities typically
imply thicker shells than Newtonian viscosities, but the
uncertainties are presently large [McKinnon, 1999; Nimmo
and Manga, 2002; Showman and Han, 2004; A. Barr et al.,
Convective instability in ice I with non-Newtonian rheology:
Application to the icy Galilean satellites, submitted to
Journal of Geophysical Research, 2004]. A very important
consequence of convection is that the stagnant, conductive
lid thickness is independent of the total shell thickness
[Solomatov, 1995]. This conductive lid will be the only part
of the shell in which elastic stresses are important, and will
have a temperature structure which does not change with
time (assuming constant heat production). Thus the contri-
bution from thermal contraction stresses will be negligible.
However, if the total shell is still thickening, because of an
imbalance between heat production and heat transport, the
volume change stresses will still apply, as in the conductive
case. Thus even the onset of convection will not change the
general shape of the near-surface stresses, as long as the
shell continues to thicken. It is also important to note that
the typical convective stresses are unlikely to exceed
0.1 MPa [Tobie et al., 2003], and are thus much smaller
than the stresses calculated here.
[31] The near-surface stresses of order 10 MPa calculated

here are so large that the ice is likely to yield. On the basis
of surface observations, this yielding most probably takes
the form of brittle failure [Zuber and Parmentier, 1984],
though plastic flow is another possibility. Brittle failure will
reduce the local stresses. However, on Europa it has been
observed that tectonic features commonly cross other fea-
tures, such as bands, without any deflection. This suggests
that healing of tectonic features is a relatively rapid process
on icy satellites, and thus that the long-term accumulation of
strains is unlikely to be affected by temporary yielding.
Models similar to Figure 1 were carried out with the
compressional stresses being reset to zero when they
exceeded a critical value (to simulate brittle failure), and
allowed to increase as normal thereafter. The total elastic
strain was not significantly different from the case when no
brittle failure was allowed.
[32] The analysis of section 2 is appropriate for an ice

shell, and thus neglects processes, such as differentiation,
happening within the satellite interior. Though such pro-
cesses may have profound effects on satellite tectonics [Kirk
and Stevenson, 1987; Squyres and Croft, 1986; Mueller and
McKinnon, 1988], they are generally confined to the earliest
history of the satellites and are unlikely to be relevant to the
case of Europa (discussed below) which has a surface age
<100 Myr [Zahnle et al., 2003]. Similarly, this analysis
neglects phase changes in ice shells, and is thus appropriate

to shells thinner than 150 km or so, depending on the
gravitational acceleration.
[33] One would expect that varying the ice viscosity only

has a significant effect in relatively warm parts of the shell,
and this turns out to be the case. For instance, reducing the
reference viscosity to 1014 Pa s and 1013 Pa s allows viscous
relaxation to take place at depths of 8 km and 6 km after
100 Myr. The near-surface stresses, however, are unchanged
simply because of the very high near-surface ice viscosity.
In a similar fashion, changing the activation energy will
alter the depth at which viscous relaxation becomes impor-
tant, but will have no effect on near-surface stresses.
[34] Since the elastic stresses are proportional to the

Young’s modulus, changing E results in a corresponding
change in stress. Even for a conservatively low value for E
of 1 GPa, stresses still approach 5 MPa after 100 Myr. The
strain, however, remains unchanged. Changing E also
changes the Maxwell time, and thus the depth at which
viscous relaxation occurs, but this effect is very small.

5. Application of Results

[35] The results of section 3 may be summarized as
follows: cooling ice shells will initially experience shallow
(<1 km) compressional stresses and deeper extensional
stresses. As time progresses, the extensional stresses will
increase in magnitude and dominate at progressively shal-
lower depths. The peak extensional stresses exceed 10 MPa
for a shell thickness >20 km, while the maximum compres-
sional stresses occur at early times and are a factor of 3
smaller. After �50 Myr of cooling the whole ice shell will
be in extension (Figure 3). The maximum extensional
stresses and strains after 100 Myr approach 25 MPa and
0.35%, respectively, while the maximum compressional
values are a factor of 3 smaller. In this section we apply
these model predictions to Europa.
[36] A puzzling aspect of Europa’s deformation is that it

is dominated by extension [e.g., Squyres and Croft, 1986].
Long-wavelength undulations interpreted as folds have been
identified in one area [Prockter and Pappalardo, 2000], and
some double ridges may have accommodated compression
[Patterson et al., 2004], but the vast majority of tectonic
features are extensional. In particular, many of the features
termed bands accommodate extension in a manner similar
to mid-ocean ridges on Earth [Sullivan et al., 1998; Prockter
et al., 2002] and occupy roughly 5% of the surface area in
two mapped swaths [Figueredo and Greeley, 2004].
[37] The stresses responsible for surface deformation on

Europa have been estimated at a few MPa on the basis of
the requirements of fault motion down to depths of 1–3 km
[Pappalardo et al., 1999] and flexural bending stresses
[Nimmo et al., 2003a]. These stresses greatly exceed the
maximum diurnal tidal stresses of �0.1 MPa [Greenberg et
al., 1998; Hoppa et al., 1999]; as a result, the source of the
stresses responsible for the observed deformation is also
somewhat puzzling. One possibility is an episode of polar
wander or nonsynchronous rotation, which can generate
stresses of a few MPa [Leith and McKinnon, 1996].
Although the spatial distribution of fractures on Europa
has been used to infer various amounts of nonsynchronous
rotation [Greenberg et al., 2002; Kattenhorn, 2002; Spaun
et al., 2003; Sarid et al., 2004], there is as yet no consensus
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on whether any such rotation has actually occurred. Com-
positional buoyancy [Nimmo et al., 2003b; Pappalardo and
Barr, 2004] is another mechanism for providing stresses of
a few MPa, but requires a thick shell and significant lateral
variations in impurity content. Localized thermal stresses
due to convection are unlikely to exceed 0.1 MPa [Tobie et
al., 2003] because the driving temperature contrast is only
of order 10 K [Nimmo and Manga, 2002]. It is therefore
clear that the �10 MPa stresses arising from cooling are
likely to dominate all other sources of stress, particularly for
thick ice shells.
[38] There are four lines of evidence suggesting that the

ice shell of Europa is not in steady-state (see also the
discussions by Pappalardo et al. [1999] and Figueredo
and Greeley [2004]). Firstly, its surface age of �60 Myr
[Zahnle et al., 2003], coupled with the fact that very few
of the impact craters are tectonically deformed [Figueredo
and Greeley, 2004], suggests that some kind of relatively
rapid resurfacing event occurred. Secondly, there are wide
variations in the estimates of both total shell thickness
[Pappalardo et al., 1998; Greenberg et al., 2000; Schenk,
2002] and effective elastic thickness [Billings and
Kattenhorn, 2004]. These discrepancies may partly be
due to spatial variations in these quantities, but could
also be due to temporal variations in shell properties.
Thirdly, regional-scale geological mapping suggests
that certain types of features, notably chaos terrain,
occur mainly near the top of the stratigraphic column
[Figueredo and Greeley, 2004]. While this effect might
be due to difficulties in identifying ancient chaos terrains,
it suggests that the geological behaviour of Europa has
changed with time. Finally, Europa’s orbital and thermal
evolution are intimately coupled, and recent models
suggest that significant changes in tidal dissipation, and
thus shell thickness, can occur on timescales comparable
to the estimated surface age [Hussmann and Spohn,
2004].
[39] If Europa’s ice shell has indeed thickened over

time, the results of Figures 1–3 may help to explain
observations of its geological behaviour. Firstly, the
magnitude of the stresses implied (a few tens of MPa)
can easily account for stresses inferred from the tectonic
features (see above). Secondly, the preponderance of
extensional features becomes easy to understand. As
argued above, although shallow (<1 km) stresses will
initially be compressional, as the shell thickens exten-
sional stresses will increasingly dominate (Figure 3a).
Thus preexisting compressional features are likely to be
overprinted by later extensional features. The absence of
observed compressional features suggests that the vol-
ume change stresses are dominant, and thus that the
shell is relatively thick (Figure 3). Figure 3 also sug-
gests that peak extensional stresses are likely to occur at
depths of 1–2 km, broadly compatible with geologically
inferred brittle-ductile transition depths [Pappalardo et
al., 1999].
[40] Although the predicted stress magnitudes and pre-

dominantly extensional style agree well with observations,
the predicted strains are more problematic. Figure 3 shows
that the extensional elastic strains after 100 Myr cooling
do not exceed 0.35%. Conversely, the extension accommo-
dated by bands is closer to 5% [Figueredo and Greeley,

2004]. This order of magnitude difference cannot be
explained by any of the uncertainties discussed above:
the maximum elastic strains are of order alDT and u/Rs for
the thermal contraction and volume change models, re-
spectively, and cannot generate 5% strains for reasonable
temperature structures and shell thicknesses. We are left
with two possibilities: either there are additional processes
at work, such as yielding, which generate increased
extensional strains in response to the stresses; or compres-
sional features must be common on the surface of Europa,
but have not yet (in most cases) been identified.

6. Summary and Conclusions

[41] Stresses will be generated in a thickening ice shell
due to two effects: contraction from cooling, and extension
due to the volume change of freezing water. The combined
stresses will be extensional, except at shallow (<1 km)
depths and for low shell thicknesses. The magnitude of
these stresses exceeds 10 MPa for shells in excess of 20 km
thickness, and probably exceeds any other likely source of
stress. The dominance of extensional stresses may help to
explain the lack of observed compressional features on the
surface of Europa. However, the elastic strains implied by
this model are an order of magnitude smaller than inferred
amounts of surface extension. Either the predicted stresses
result in more extension than expected for a purely elastic
medium (e.g., due to yielding), or there are as yet uniden-
tified locations of compression on Europa.

Appendix A

[42] Here the stresses caused by the volume change effect
(see section 2) are derived. In a spherical elastic shell, we
have [Timoshenko and Goodier, 1970]

dst
dt

¼ dsr
dt

þ r

2

d

dt

dsr
dr

ðA1Þ

and also

dst
dt

¼ E

r 1� nð Þ
du0

dt
þ n
1� n

dsr
dt

; ðA2Þ

where u0 is the (radial) displacement at r and the tangential
strain is given by u0/r.
[43] From Hillier and Squyres [1991, equation (A17)] we

have, neglecting effects due to cooling and correcting their
final plus sign to a minus,

1� n
2E

dsr
dt

¼ C1

3
þ C2

r3
�
Z r

Ri

1

12m
dsr
dr

dr; ðA3Þ

where C1 and C2 are constants to be determined by the
boundary conditions. The first boundary condition, sr = 0 at
r = Ri, is straightforward and yields

C1 ¼ �3
C2

R3
i

: ðA4Þ

[44] The second boundary condition is a specified dis-
placement u(t) at r = Rs. To apply this boundary condition,
we first calculate the surface tangential stresses by differ-
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entiating equation (A3), substituting into equation (A1) and
applying equation (A2):

1� nð Þ
E

dst
dt

¼ 2C1

3
� C2

r3
� 2

Z r

Ri

1

12m
dsr
dr

dr � r

12m
dsr
dr

¼ 1

r

du0

dt
þ n
E

dsr
dt

: ðA5Þ

Applying the boundary condition that u0 = u(t) at r = Rs and
making use of equations (A3) and (A4), we finally obtain

1� nð Þ
2E

dsr
dt

¼�
Z r

Ri

1

12m
dsr
dr

dr þ r3 � R3
i

r3Q

� �
1

Rs

du

dt

�

þ n
E

dsr
dt

� �
r¼Rs

þ Rs

12

1

m
dsr
dr

� �
r¼Rs

þ 2

Z Rs

Ri

1

12m
dsr
dr

dr

�
; ðA6Þ

where

Q ¼ 2þ Ri

Rs

� �3

: ðA7Þ

[45] Equation (A6) is the equivalent of equation (A18) of
Hillier and Squyres [1991], in that it allows the evolution of
sr as a function of depth and time to be calculated, given the
specified evolution of the surface uplift u(t). The first two
terms inside the large bracket are the elastic response; the
other terms are due to the finite viscosity. It can be seen by
inspection that dsr/dt = 0 at r = Ri.
[46] If the viscosity is very large, the terms involving m

may be neglected and equation (A6) may then be simplified.
After some algebra, it yields

sr jr¼Rs
¼ 2Eu�

1� nð ÞRs

; st jr¼Rs
¼ Eu

1� nð ÞRs

1þ 2�n
1� n

� �
; ðA8Þ

where � = (Rs/Ri) � 1.

Appendix B

[47] Here the numerical implementation of equations (3)
and (8) is described. An explicit, finite-difference approach
was used, with a constant grid spacing in the relevant part of
the ice shell. 61 vertical grid points were used, with the grid
spacing updated each time step to take into account the
growing ice shell. This updating necessitated interpolation
of the stresses onto the new grid spacing each time step. The
base temperature Trel was set to 180 K; stresses at greater
depths were assumed to relax instantaneously.
[48] The initial temperature conditions were obtained by

solving the Stefan problem for a shell of thickness 2.4 km.
Temperatures were recalculated at time steps given by
0.1Dz2/k, where Dz is the grid spacing; this time step was
not allowed to exceed 1000 yrs. For each point, stresses
were updated using equations (3) or (8) at time steps of
0.5m/E or 0.1 times the temperature time step, whichever
was smaller. The nature of equations (3) and (8) mean that a
runaway occurs if sr < 0. To avoid this occurring, if the
change in sr in any time step would have resulted in sr < 0,
sr was set to zero.

[49] Increasing Trel to 200 K from 180 K resulted in no
detectable change in the final stress distribution in Figure 2.
This was to be expected, since ice at such high temperatures
relaxes stresses in a viscous fashion. Reducing the number of
grid points from 61 to 31 resulted in the stresses shown in
Figure 2 changing by <0.1%. By setting the reference
viscosity to a high value (1035 Pa s), it was verified that the
elastic stresses (equations (10) and (A8)) were recovered.

[50] Acknowledgments. I am grateful to Bob Pappalardo for helpful
discussions, and Walter Kiefer and an anonymous reviewer for constructive
suggestions. Funded by NASA PGG grant NNG04GE89G.
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