

Alais Meteorite (CI chondrite)

Solid Earth materials: minerals

What is a mineral?

-- a naturally occurring, solid material with a repeating crystal structure and restricted composition

What minerals are there?

- -- 1000's, but most are very rare.
- -- Most abundant at Earth's surface are silicates, salts and oxides

Salts – ionic bonding of cations and anions:

	Simple halides		Halite	≥ Na⁺Cl [_]	
	Complex salts Ca	arbonates	Calcite Aragonite Dolomite	Ca ²⁺ [CO ₃] ²⁻ Ca ²⁺ [CO ₃] ²⁻ Ca ²⁺ Mg ²⁺ [CO ₃] ²⁻ ₂	
	Su	ulfates	Anhydrite Gypsum	Ca ²⁺ [SO ₄] ^{2–} Ca ²⁺ [SO ₄] ^{2–} .2H ₂ O	
Oxides – most common tend to have X ³⁺ and X ⁴⁺ cations (why?):					
	Iron oxides Iron oxy-hydroxi	des	Hematite Goethite	Fe ³⁺ ₂ O ₃ Fe ³⁺ O(OH)	
	Aluminum oxy-hydroxides		Diaspore Gibbsite	Al ³⁺ O(OH) Al ³⁺ (OH) ₃	
	Manganese oxid	les	Birnessite	X ^{+,2+} Mn ^{3+,4+} O ₂ .nH ₂ O	
Phosphates – rare but important source of nutrient					
	Calcium phosphates		Apatite	Ca ₅ [PO ₄] ^{3–} ₃ (F,OH,Cl)	C C

Goldich's weathering series

Notice a pattern?

Diagram from Wikipedia

Solvation and solubility

image from Taxman, Wikimedia

+1, +2, -1 charged ions, & polar molecules participate in polar, Hbonded network of liquid water

image from Railsback, U. Ga.

What happens to elements with stronger ionic potential?

Solubility "rules" from Introductory Chemistry

Solubility Rules

The following are the solubility rules for common ionic solids. If two rules appear to contradict each other, the preceding rule takes precedence.

1.Salts containing Group I elements (Li⁺, Na⁺, K⁺, Cs⁺, Rb⁺) are soluble. There are few exceptions to this rule. Salts containing the ammonium ion (NH₄⁺) are also soluble.

2.Salts containing nitrate ion (NO_{3}) are generally soluble.

3.Salts containing Cl⁻, Br⁻, or l⁻ are generally soluble. Important exceptions to this rule are halide salts of Ag⁺, Pb²⁺, and (Hg₂)²⁺. Thus, AgCl, PbBr₂, and Hg₂Cl₂ are insoluble.

4.Most silver salts are insoluble. AgNO₃ and Ag($C_2H_3O_2$) are common soluble salts of silver; virtually all others are insoluble.

5. Most sulfate salts are soluble. Important exceptions to this rule include $CaSO_4$, $BaSO_4$, $PbSO_4$, Ag_2SO_4 and $SrSO_4$.

6.Most hydroxide salts are only slightly soluble. Hydroxide salts of Group I elements are soluble. Hydroxide salts of Group II elements(Ca, Sr, and Ba) are slightly soluble. Hydroxide salts of transition metals and Al³⁺ are insoluble. Thus, Fe(OH)₃, Al(OH)₃, Co(OH)₂ are not soluble.

7.Most oxide salts are insoluble. Important exceptions include Group 1 element oxides (Na⁺, K⁺, etc.) 8.Most sulfides of transition metals are highly insoluble, including CdS, FeS, ZnS, and Ag₂S. Arsenic, antimony, bismuth, and lead sulfides are also insoluble.

9.Carbonates are frequently insoluble. Group II carbonates (CaCO₃, SrCO₃, and BaCO₃) are insoluble, as are FeCO₃ and PbCO₃.

10.Chromates are frequently insoluble. Examples include PbCrO₄ and BaCrO₄.

11.Phosphates such as $Ca_3(PO_4)_2$ and Ag_3PO_4 are frequently insoluble.

12.Fluorides such as BaF₂, MgF₂, and PbF₂ are frequently insoluble.

Also see Monroe and Abrams (1984) A perspective on solubility rules. J. Chem. Ed. V.61 p. 885.

They tend to disrupt the water – splitting it or agglomerating into separate clusters

Very high ionic potentials can lead to formation of oxy-ions, where the ion "steals" oxygen atoms from water to make its own sheath, e.g., $S^{6+} \rightarrow SO_4^{2-}$

These oxyions tend to be larger, and have lower charge, and so can be highly soluble (sulfate) or sparingly soluble (phosphate, silicic acid)

Railsback, U. Ga.

EDTA chelate of a metal cation "M"