ESS C113/C213 Biological and Environmental Chemistry

Lecture 19: Global Sulfur cycle

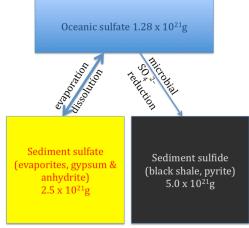
Reading: Schlesinger "Global cycles of sulfur and mercury"

Ch. 13. The sulfur cycle

- 1. Fig. 13-1
 - a. Major crustal pools

i. CaSO₄ & CaSO₄.2H₂O
ii. Shale organics/sulfides
5.0x10²1 g

b. Surface (active) pools


i.	Atmosphere	2.8x10^12 g
ii.	Ocean	$1.28 \times 10^{2} \text{ g MRT} \approx 10^{7} \text{ years!}$
iii.	Soil (organic)	1.5x10^16 g
iv.	Land Plants	8.5x10^15 g

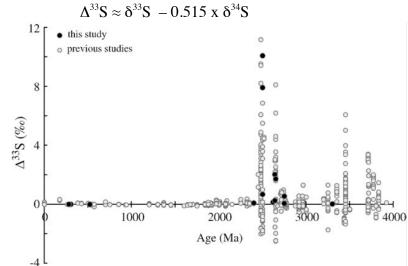
2. Fluxes (~1990's)

i. Sea-salt aerosols 1.4x10^14 g/yr (most falls back) ii. Fossil-fuel burning 9x10^13 g/yr (1990's estimate) iii. Biogenic gases $\sim 2x10^{13}$ g/yr (highly uncertain) 1. H_2S , $(CH_3)_2S$, SCO (mostly sulfides) iv. Volcanoes $\sim 1x10^{13}$ g/yr (variable) 1. H_2S , $SO_2 \rightarrow SO_4^{2-}$ v. Dust $\sim 8x10^{12}$ g/yr (large uncertainty)

- 3. Unlike carbon, there is no long-lived atmospheric reservoir (most S-bearing gases quickly oxidize to sulfate, which nucleates aerosols/precipitation).
 - a. S-pollution is mainly regional, not global, and typically reacts only to short-term forcings.
 - i. Concentration of effects near sources: S from coal \rightarrow acid rain
 - 1. perturbs weathering, can overcome normal neutralization capacity of soils
 - 2. leaching of Mg2+, Ca2+, K+
 - 3. may mobilize normally immobile elements to toxic levels (i.e., Al3+)
 - b. Violent volcanic eruptions can inject sulfate to stratosphere where it lasts longer than typical tropospheric aerosols
 - i. sulfate aerosols typically light-colored, small: reflect lots of sunlight
 - ii. ~year long climate effects

4. Simplified sulfur cycle (Schlesinger 13-2):

- 5. Ancient sulfur cycles
 - a. Much like carbon, large geologic pools interact with more mobile surface pools of sulfur
 - b. Also like carbon, isotopic signatures of oxidized & reduced phases can proxy for rates of sulfur "loss" and "gain" from these reservoirs.
 - i. δ³⁴S -- ³⁴S/³²S relative to a standard (troilite, an FeS mineral from the Cañon Diablo meteorite), thought to be more-or-less like bulk Earth (and volcanic emissions)


1.
$$\delta^{34}S = [(^{34}S/^{32}S)_{sample}/(^{34}S/^{32}S)_{standard} - 1] \times 1000$$

- ii. Main isotope separation mechanism during the Phanerozoic: sulfate reduction (!)
 - 1. Sulfide (H₂S) typically has δ^{34} S ~25‰ lower than the reactant sulfate (SO₄²⁻)
 - a. actually varies quite a bit (can be up to 60%!)
 - 2. Seawater sulfate, precipitated evaporite minerals seem to have similar δ^{34} S
- iii. Isotopic see-saw
 - 1. More sulfate reduction \rightarrow loss of ³²S from surface reservoirs (ocean) \rightarrow higher δ^{34} S in sulfate **and** sulfide relative to today.
 - 2. Less sulfate reduction \rightarrow more ³²S in environment \rightarrow lower δ^{34} S than today.
 - 3. $\sim 10^7$ residence time of sulfate in ocean (at least today), much slower than mixing of ocean water, suggests a global response
 - 4. Schlesinger fig. 13.3.
 - a. Roughly equal balance between sulfide and sulfate today.
 - b. Wide variations in past
 - c. Anti-correlation with d13C

Garrels and Lerman equation

4FeS2 + CaCO3 + 7 CaMg(CO3)2 + 7SiO2 ← → 15CH2O + 8CaSO4 + 2Fe2O3 + 7MgSiO3

- c. A weird discovery...
 - i. James Farquhar and others measured not just 34/32, but also 33S/32S in ancient sulfide and sulfate samples.
 - ii. They found that δ^{33} S wasn't always ½ as big as δ^{34} S even though normal chemical and physical processes would be expected to separate 34 S from 32 S twice as efficiently as 33 S.
 - iii. Difference between measured δ^{33} S, and δ^{33} S expected from δ^{34} S:

- iv. (Summary fig from Domagal-Goldman et al., 2007, Science 317:1900)
- v. "Mass independent fractionation" before 2.5x10⁹ years ago (the Archean)
- vi. Most likely explanation: UV photochemistry.
 - 1. Ozone does the same thing! (Though the details are probably different)
 - 2. But atmospheric sulfur species (the ones that are moving around in a UV-irradiated environment) are dominated by oceanic sulfate fluxes (out) and fossil fuel/ocean fluxes (in).
- vii. What if oceanic sulfate isn't the dominant mobile sulfur pool?
- viii. Anoxia little sulfate present, Fe²⁺ more common in natural waters?
 - 1. Sulfides much less soluble, ocean pool much smaller.
 - 2. Atmosphere less dominated by sulfate aerosols
 - 3. Some sulfur leaves the atmosphere in reduced or intermediate oxidation states depending on the photochemical pathway.
 - 4. Photochemistry of volcanic SO₂, reduced sulfur species more important.

5. Probably requires atmosphere with < 0.2 Pa $\rm O_2$ (there's 20,000 Pa $\rm O_2$ today!)