ESS C109/C209 Isotope Geochemistry HW4 Due May 16, 2007

Part 1: Isotope dilution.

1. Mass spectrometers are very good at measuring the isotopic composition of one element in a sample. However, it is often also necessary to determine the concentration of an element or isotope, and compare it to the abundance of an isotope of a different element (as in isochron and U,Th/Pb dating). Isotope dilution is one method that enables absolute concentrations to be determined from an isotope ratio measurement. This technique is discussed in section 4.4e of Faure & Mensing.

Using eq. 4.38, determine the concentration of vanadium in a 10g sample of an iron meteorite. The spike in this case is 1 ml of a solution of pure $(100\%)^{50}$ V, at a concentration of 5 x 10⁻⁵ g/l.

- a. Qualitatively, how much vanadium would you expect to find in an iron meteorite?
- b. What are the normal abundances of 50 V and 51 V?
- c. After adding the spike to the sample and dissolving the mixture, its ${}^{50}V/{}^{51}V$ ratio is determined to be 0.021. What is the concentration of vanadium in the meteorite (in gV/gMeteorite)?
- d. If the procedure used to purify the vanadium from the dissolved meteorite sample isn't perfect (i.e., contaminants make it through), what atoms and/or molecules might form ions with mass/charge ratios of 50 or 51, perturbing the measured ratio? Can you think of a way to use the mass spectrometer to check for the presence of these contaminants?
- e. Isotope dilution is almost always done with a spike that has a high concentration of what is normally a rare isotope. Looking at eq. 4.38, can you come up with a reason why?

Part 2: ⁴⁰Ar*/³⁹Ar* geochronology

2. High-precision geochronology is widely used for tectonic reconstruction and determining the ages of important objects and events in the evolution of life. One major area of study is the fossil record of human ancestors and relatives. The Tabarin mandible (with two teeth), reported by Stephen Ward and Andrew Hill from the Lake Baringo area in Kenya, is an example of an early hominid fossil (pictures next page).

faulted dip slopes tilting more gently into the Kerio Valley on the west. In the fault scarps and eastern foothills, a series of sedimentary rocks and intercalated lava flows and tuffs are exposed extending in age from nearly 16 Ma to the later Pleistocene. A number of fossil hominoids and other primates have been recovered from this sequence (see Hill, 1999, for summary).

Approximately 500 m of a generally well exposed, structurally coherent Mio-Pliocene stratigraphic section extending through an uppermost flow of the Kabarnet

Figure 2. Combined stratigraphic succession for the Kapcheberek–Tabarin area. Limestone, \boxtimes ; gravelly sandstone, \boxtimes ; sandstone, \boxtimes ; siltstone, \boxtimes ; claystone, \boxtimes ; tuff, \boxtimes ; basalt sill, \boxtimes ; basalt flow, \boxtimes .

The sedimentary and volcanic rock section from which this fossil was recovered are shown on the previous page. Because of the importance of this fossil and others found nearby, this section has been carefully studied to determine how long ago it was deposited. The mandible fragment, in particular, was found approximately 1 meter above a tuff (volcanic) layer, corresponding to samples 10, and 94-1(a), (b), and (c) on the section. It is about 80 m below the next datable tuff, indicated as Sample 32. For each of these samples, a number of anorthoclase (KAlSi₃O₈) crystals were picked for ⁴⁰Ar*/³⁹Ar measurements. The data are shown below (from data of Deino and coauthors):

Table 2 Continued

Lab ID#	Ca/K	³⁶ Ar/ ³⁹ Ar	$^{40}\mathrm{Ar}^{\star/^{39}}\mathrm{Ar}$	39 Ar (moles $\times 10^{14}$)
Sample 32:	Cross-bedded	buff lapillistor	ne bearing crys	tal-poor predoi
$\mathcal{J}=(2.725\pm$	$0.02) \times 10^{-3}$.			
277-01	0.0593	0.00009	0.827	1.9
277-02	0.0209	0.00004	0.823	5.6
277-06	0.0311	0.00005	0.824	2.8
277-08	0.0522	0.00004	0.837	2.0
277-09	0.0436	0.00001	0.825	3.5
277-10	0.0262	0.00001	0.831	2.8
277-11	0.0229	0.00003	0.843	1.5
Sample 10	15 om doon obe	ann al filling ligh	t oner hontonit	is tuff beening

Sample 10: 15-cm deep channel-filling light grey bentonitic tuff bearing Lies immediately below a laterally continuous reworked shar $\mathcal{J}=(2.724\pm0.02)\times10^{-3}$ for Lab ID# 269; $\mathcal{J}=(2.933\pm0.02)\times10^{-3}$

1422.				
269-09	0.0449	0.00012	0.895	2.2
269-13	0.0555	0.00006	0.901	1.4
269-15	0.0322	0.00004	0.913	1.4
269-16	0.0037	0.00004	0.897	$1 \cdot 1$
269-17	0.0642	0.00006	0.895	$1 \cdot 1$
269-18	0.0057	0.00007	0.898	1.8
454-03	0.0000	0.00000	0.836	0.8
454-04	0.0092	-0.00001	0.839	1.2
454-07	0.0302	-0.00002	0.840	1.2
454-08	0.0067	0.00001	0.842	1.3
1422-06	0.0190	0.00006	1.829	0.5
1422-09	0.0447	0.00011	1.808	0.5
454-05	0.0257	0.00001	2.787	1.0
454-09	0.0381	0.00008	2.810	2.3

Sample	94-1a:	Fine	pumice	tuff,	near	top	of	bedded	3–10 cm	thick	1
$\hat{\gamma} = (1.70)$	9 + 0.0	02) ×	10 ⁻³ . G	PS lo	catior	1 of 9	94-1	1: Lat. 0	°45.546'N	I. Long	5

J=(1 709 ±	0.002) ^ 10 . 01	5 location of 9-	1-1. Lat. 0 15	, JHO IN, LOIIG.
20075-08	0.0619	0.00011	1.427	0.9
20075-10	0.0125	0.00014	1.427	1.0
20075-07	0.0431	0.00002	1.435	1.7
20075-11	0.0175	0.00005	1.436	0.9
20075-05	0.0295	0.00026	1.443	0.8
20075-06	0.0449	0.00046	1.444	1.0
20075-12	0.0109	0.00004	1.446	0.4
20075-01	0.0601	0.00030	1.454	1.0
20075-15	0.0313	0.00001	1.469	0.5

a) Using eq. 7.8 from Faure and Mensing, determine the ages of each anorthoclase for these three samples. The values of the J-function (J) is 2.725x10⁻³ for samples beginning with "277", for "269" samples the J is 2.724x10⁻³, for "454", J = 2.933x10⁻³, for "1422", J = 1.361x10⁻³, and for "20075", J=1.709x10⁻³.

- b) Are there any outliers? By this I mean crystals that have a very different age from the other crystals in the sample. What might cause these crystals to be mixed in with material of a different age?
- c) Excluding outliers, what is the average age of the samples that come from 1 m below the fossil?
- d) What is the average age of the sample that comes from 80 m above the fossil?
- e) What is the age of the Tabarin mandible? Consider the maximum and minimum possible ages, and a "best estimate" age.

Part 3: U,Th/Pb geochronology

U,Th/Pb-zircon geochronolgy is the gold standard for geochronology for a number of reasons, including the toughness and durability of zircon, the accuracy of known decay constants, and the ability to correct age determinations in some crystals with open-system (parent or daughter loss/gain) histories. These properties are particularly important when dealing with the most ancient Earth samples, which have often experienced complicated and intense periods of metamorphism (heating & burial) after crystallization.

A famous exposure of very old rocks is in the southwest corner of Greenland, including the Isua Supercrustal belt and nearby Akilia. Data from Manning et al. (2006). Here we're ignoring some of the geological context for simplicity.

3. a) Using the data provided below (and assuming negligible initial concentration of daughter Pb isotopes), determine the ²³⁸U/²⁰⁶Pb. ²³⁵U/²⁰⁷Pb, and ²³²Th/²⁰⁸Pb ages of each sample of zircon from Akilia (²⁰⁷Pb/²⁰⁶Pb ages are already in the table).
b) Are the U/Pb, Pb/Pb, and Th/Pb ages the same for each sample? Which is typically the oldest? Why?

b) Plot the results on a Wetherill Concordia diagram. You may want to zoom in on the part that extends from $\sim 3x10^9$ to $4x10^9$ years

c) Did these zircons experience significant lead loss?

d) How	old are	the Akilia	rocks?
--------	---------	------------	--------

Grain-	²⁰⁶ Pb*/ ²³⁸ U		²⁰⁷ Pb*/ ²³⁵ U		²⁰⁷ Pb*/ ²⁰⁶ Pb*		²⁰⁷ Pb/ ²⁰⁶ Pb		²⁰⁶ Pb*			²⁰⁸ Pb/ ²⁰⁶ Pb
spot	ratio	1σ	ratio	1σ	ratio	1σ	age (Ma)	1σ	(%)	Th/U	1σ	ratio
			GR9713	-2, Fe-rie	ch quartz-p	yroxene	rock, sessio	n 2 (con	tinued)			
13-1	0.7249	0.0080	31.92	0.36	0.3194	0.0009	3567	4	99.76	0.0536	0.0013	0.0218
14-1	0.6334	0.0098	24.62	0.39	0.2819	0.0009	3374	5	99.77	0.1515	0.0019	0.0520
15-1	0.5249	0.0038	13.02	0.20	0.1799	0.0027	2652	25	99.98	0.0359	0.0009	0.0120
				GR	00114, anth	hophyllit	e-garnet sch	ist				
2-1	0.7350	0.0072	33.18	0.32	0.3274	0.0016	3605	7	99.78	0.0693	0.0023	0.0236
5-1	0.7421	0.0094	34.42	0.47	0.3364	0.0032	3646	15	99.66	0.2186	0.0092	0.0745
6-1	0.7130	0.0119	31.20	0.53	0.3174	0.0014	3557	7	99.84	0.2067	0.0077	0.0643
				GR98	802, tonalit	ic orthog	gneiss, sessio	on 1				
11-1	0.7595	0.0121	36.54	0.64	0.3489	0.0033	3702	15	99.40	0.4259	0.0189	0.1578
11-2	0.7310	0.0146	35.18	0.72	0.3490	0.0030	3703	13	99.31	0.3379	0.0166	0.1150
11-3	0.8412	0.0287	41.74	1.39	0.3598	0.0021	3749	9	99.56	0.1643	0.0047	0.1087