Age and regional tectonic implications of Late Cretaceous thrusting and Eocene extension, Cabinet Mountains, northwest Montana and northern Idaho

JEFFREY A. FILLIPONE and AN YIN

Geological Society of America Bulletin 1994;106, no. 8:1017-1032

Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA’s journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization’s Web site providing the posting includes a reference to the article’s full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.

Notes
Age and regional tectonic implications of Late Cretaceous thrusting and Eocene extension, Cabinet Mountains, northwest Montana and northern Idaho

JEFFREY A. FILLIPONE AN YIN

Department of Earth and Space Sciences, University of California, Los Angeles, California 90024-1567

ABSTRACT

Understanding the kinematic and temporal relationships between the Cordilleran magmatic belt and the foreland fold and thrust belt can provide insights into the development of thrust systems in retro-arc settings. Combining data from field mapping and 40Ar/39Ar geochronometry and thermochronometry, we show that Late Cretaceous thrusting in the Cabinet Mountains of the northwest Montana thrust belt coincided both spatially and temporally with hinterland magmatism. Thrusting and magmatism in the hinterland of the northwest and southwest Montana thrust belt were coeval with development of the foreland fold and thrust belt during the Late Cretaceous. Movement on the Moyie thrust, a principal thrust in the western part of the Purcell anticlinorium, occurred between ca. 71 and 69 Ma. In the Cabinet Mountains, the anticlinorium developed by systems of east- and west-directed thrusts, with a southward decrease in slip on the Moyie thrust that helped contribute to an overall shortening in the anticlinorium in Montana than in British Columbia. The lithosphere underlying the anticlinorium may have been thermally weakened by magmatic heating, promoting the development of both the Late Cretaceous thrusts and early to middle Eocene normal faults.

INTRODUCTION

The Cordilleran orogen from the southern Andes to Alaska developed during a lengthy and complex period of convergence between dominantly oceanic plates of Pacific affinity and continental lithosphere. Along this belt, continental crust was affected by repeated episodes of shortening and arc magmatism. Uncertainties remain, however, as to whether magmatism caused thrusting, what the sequence of thrusting was, and how thrusting in the hinterland was related kinematically and temporally to that in the foreland. Theories developed to explain the relationship between magmatism and thrusting in the Cordillera include displacement by magma (Smith, 1981; Scholten, 1973; Allmendinger and Jordan, 1981) and thermal weakening by magmatic heating (Burchfiel and Davis, 1975; Scholten, 1982; Isacks, 1988). Each theory embodies a set of predictions for the development of structures across the orogen that can be tested by observations. In the North American foreland fold and thrust belt, it has been proposed that (1) magmatism and thrusting were synchronous (Hyndman and others, 1988), (2) that magmatism caused thrusting (Smith, 1981), and (3) that magmatism was a result of anatexis due to crustal thickening (Archibald and others, 1984). Some or all of these proposals may be mutually compatible. Interpretation of how magmatism and thrusting were related also have important implications for palinspastic reconstruction of the fold and thrust belt (for example, Allmendinger and Jordan, 1981).

In the northwest United States and southwest Canada, the eastern Cordillera consists of a magmatic belt of Mesozoic to early Tertiary age in the west, transitional with the foreland fold and thrust belt to the east. Unlike the example of the Cenozoic Andes, the transition between the magmatic belt and the foreland fold and thrust belt is well exposed in northwest Montana and southeast British Columbia, providing a glimpse into deeper structural levels of the hinterland. In an effort to understand the relationship between magmatism and thrusting, we address the following questions: what are the relative ages of magmatism and thrusting, what sequence did thrusting follow in the hinterland-foreland transition, and how did the transition zone between the foreland and hinterland, now occupied by the Purcell anticlinorium, evolve during this time? Price (1981) and Archibald and others (1984) have shown that some east-directed thrusts are "stitched" by Cretaceous plutons in the Purcell anticlinorium. These thrusts thus are apparently older than in southwestern Montana where magmatism and thrusting overlapped in both space and time (Robinson and others, 1968).

Mapping of crosscutting relations and 40Ar/39Ar geochronometry in the Cabinet Mountains place limits on the ages of magmatism and thrusting in the hinterland. In this paper, we discuss local deformation related to pluton emplacement, geometry and kinematics of thrusts, and associated structures and ages of plutonism and deformation. We conclude that the fold and thrust belt in this region experienced synmagmatic east- and west-directed thrusting in the Late Cretaceous. Inferred ages of thrusting from the eastern part of the Montana fold and thrust belt suggest that synchronous thrusting took place between the hinterland and foreland at that time. The regional décollement, into which all major thrusts are interpreted to root, formed a throughgoing thrust system beneath the Purcell anticlinorium, linking regions of coeval shortening in the foreland and hinterland. These findings are consistent with many predictions of thrust timing and geometry deduced from mechanical models of thrusting (Elliott, 1976; Chapple, 1978; Davis and others, 1983; Platt, 1986; Yin, 1993). During the middle to late Eocene, the thrust belt was dismantled along northwest-striking normal faults (Hope and Rock Lake faults) and east-dipping detachment.

Data Repository item 9415 contains additional material related to this article.

faults associated with metamorphic core complexes.

TECTONIC SETTING

The Cabinet Mountains form the western flank of the Purcell anticlinorium in the northeastern U.S. Rocky Mountains (Fig. 1). The anticlinorium is a regional structural culmination cored by rocks of the Belt Supergroup and extends from southeast British Columbia through the Cabinet Mountains and into the northern margin of the Idaho (Bitterroot) batholith. The Purcell trench, a major physiographic trough at the western limit of the anticlinorium, has been interpreted as the site of detachment faulting along low-angle normal faults that translated hanging-wall rocks in the Cabinet Mountains eastward from footwall rocks of the Priest River metamorphic complex in the Idaho Selkirk Mountains during the early Tertiary (Rehrig and others, 1987; Rhodes and Hyndman, 1984; Harms and Price, 1992). Although the pre-extensional structural configuration of the region is uncertain, Belt and younger rocks cut by east-directed thrust faults can be identified west of the Priest River complex (Rhodes and Hyndman, 1988; Stoffel and others, 1991), suggesting that the thrust belt extended as far west as the Kootenay Arc in Washington. Continuity, however, between thrusts west of the Priest River complex and those in the Cabinet Mountains has not been established.

Discussions of the geometry and structural style of thrusting in the Cabinet Mountains have been presented by Harrison and others (1980, 1986), Harrison and Cressman (1985), Wells and others (1981), and Yoos and others (1991), yet controversy still exists as to whether this region is underlain by a thin-skinned or basement-involved thrust system (see summary by Yoos and others, 1991).

STRATIGRAPHY

The Cabinet Mountains constitute the westernmost part of the Cordilleran foreland fold and thrust belt and are almost entirely underlain by Middle Proterozoic Belt Supergroup (Fig. 2). The Belt strata consist of fine-grained siliciclastic and carbonate rocks that locally are intruded by relatively small (10–60 km²), granitic plutons of late Mesozoic to Cenozoic age, intrude throughout the Prichard Formation (Harrison and others, 1986, 1992; Bush, 1989). Different interpretations of Belt stratigraphy in the region complicate the placing of contacts between these mostly transitional formations (see Winston, 1986, for regional correlations of Belt strata). Consequently, the thicknesses of formations we report are estimated from mapping and cross sections and may not match exactly those reported by others (for example, Harrison and others, 1986; Wells and others, 1981). The oldest unit in the study area is the Prichard Formation, or lowermost Belt, which is overlain by the Revett Formation comprising the Burke, Revett, and St. Regis Formations. The Wallace Formation, also known as the “middle Belt carbonate,” overlies the Revalli Group and is succeeded by the Striped Peak Formation, the youngest formation in the map area. A lack of adequate exposures and gradational contacts prevented us from making finer subdivisions of the Belt stratigraphy.

As much as 10,000 m of Prichard Formation has been estimated from exposures in the Sylvania anticline to the north (Harrison and Cressman, 1985), but only 520 m were observed in the Cabinet Mountains by Wells and others (1981). As the base of the Prichard Formation is nowhere exposed, we have assumed a minimum thickness of 4 km (Harrison and others, 1986) to 7.6 km (Harrison and others, 1992). The Prichard Formation consists mainly of dark gray to black and white epiclastic siltite, and silty argillite with thin beds of light gray quartzite. It characteristically weathers an orange or rust color attributable to the pervasive presence of pyrite and pyrrhotite. Numerous mafic sills, either of demonstrated or inferred Middle Proterozoic age, intrude throughout the Prichard Formation (Harrison and others, 1992). Winston (1989) suggested that sedimentary structures are useful for interpreting the Belt stratigraphy. We found this especially effective in placing the contact between the Prichard and Burke Formations. The contact between the Prichard and the Burke Formation is placed where thinly parallel-laminated, dark gray to black siltite grades into medium to dark gray, wavy laminated, locally cross-bedded siltite. The Burke Formation passes upward from gray wavy-laminated, lenticularly bedded siltite with abundant sole marks, into pale gray quartzite and silty quartzite in the upper few hundred meters of the formation. We mapped 1,520 m of the Burke Formation near Rock Peak (Fig. 1, location b), equivalent to the 1,500 m estimated by Wells and others (1981). The Revett Formation is mostly me-

Figure 2. Stratigraphic column of Belt Supergroup rocks in the Cabinet Mountains, northwest Montana. Thicknesses are taken from mapping in this study and published sources (Harrison and others, 1986, 1992; Wells and others, 1981).
Figure 3. Geologic map of the Lighting Creek stock and vicinity. Strong deflection of bedding has occurred adjacent to the stock. Bedding attitudes north and east of the stock and distribution of Quaternary deposits are from Harrison and Jobin (1963).

EXPLANATION

<table>
<thead>
<tr>
<th>QUATERNARY DEPOSITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qd = alluvium</td>
</tr>
<tr>
<td>Qg = gravel</td>
</tr>
<tr>
<td>DIABASE DIKES</td>
</tr>
<tr>
<td>GRANITE PORPHYRY</td>
</tr>
<tr>
<td>LIGHTNING CREEK STOCK</td>
</tr>
<tr>
<td>BIOTITE-HORBLENDE</td>
</tr>
<tr>
<td>GRANODIORITE</td>
</tr>
</tbody>
</table>

MIDDLE and UPPER BELT |
| |
| BURKE FORMATION |
| PRICHARD FORMATION |

STRUCTURAL GEOLOGY

Deformation Adjacent to Plutons

Several prominent granitoid plutons with well-developed contact aureoles occur in the Cabinet Mountains. Ductile deformation of country rocks was locally significant in the contact aureoles, which host moderate to high-temperature and low-pressure mineral assemblages (for example, andalusite, muscovite, biotite, zoisite). Besides ductile folding, mapping of bedding and minor folds around the Dry Creek and Lightning Creek stocks (Fig. 1) shows that deformation of bedding occurred as much as 0.5 to 1.5 km away from the plutons. Steepening of beds against the walls of the Lightning Creek stock (Fig. 3) occurred with little associated folding, whereas ductile similar-style folds are common in the contact aureole of the Dry Creek stock. The style of deformation near the Lightning Creek stock resembles the “return flow” predicted by Marsh (1982). Contacts of both plutons with their country rocks are sharp, with little apparent infolding of country rocks into the plutons. We int
pret the observed deformation as having developed during the final stages of pluton emplacement.

East-directed Thrust Systems

Harrison and Cressman (1985) first described the Libby thrust belt (LTB) that lies ~15 km east of the Cabinet Mountains (Fig. 1). The LTB consists of a series of east-directed thrust faults that may sole into a basal décollement in Belt strata at a depth of at least 15 km (Harrison and Cressman, 1985; and Fig. 4). About 20 km west of the Libby thrust belt, a second major east-directed thrust, the Moyie thrust, places middle and lower Belt on middle and upper Belt strata (Fig. 1). The Moyie thrust previously was identified as a major thrust in the northwest Montana and southeast British Columbia foreland fold and thrust belt (Price, 1981; McMechan and Price, 1982). The Moyie thrust probably roots into the same décollement as the LTB, making the Libby and Moyie thrusts part of the same east-directed thrust system (Fig. 4; see also Harrison and others, 1992).

Structures in the footwall of the Moyie thrust include mylonitic foliation in granitic rocks (Dry Creek stock) and discrete faulting associated with development of foliation and brecciation of Belt rocks. The deformed western margin of the Dry Creek stock provides some of the best evidence for the effects of shearing and age of movement on the Moyie thrust (Fig. 1, location d, and Fig. 5a). A small outcrop of inferred Prichard Formation in Bull Lake Valley is juxtaposed against the Striped Peak Formation, making the stratigraphic throw at this location the greatest observed in the map area. Harrison and others (1992) showed Prichard Formation thrust over the Libby Formation near Troy, Montana (see Fig. 1). The Moyie thrust also is exposed in the Rock Creek area, south of the Dry Creek stock (Fig. 1, location c, and Fig. 4), where it juxtaposes Prichard Formation in the hanging wall over Revett Formation in the footwall. Thicknesses of Belt strata compiled from Gibson (1948), Wells and others (1981), and the regional cross section in Figure 4 indicate 4 ± 0.5 km of dip slip along the Moyie thrust in the central Cabinet Mountains. This is substantially less than the ~8 km interpreted by McMechan and Price (1982) for the Moyie thrust in southeast British Columbia. At Rock Creek, the western part of the Moyie thrust plate is truncated by a later down-to-the-west normal fault (Fig. 5b), juxtaposing lower Wallace Formation against Prichard Formation, and creating a fault-bounded cross-sectional “wedge” of the Prichard Formation (Wells and others, 1981; see Fig. 5b, location 4, and Fig. 6a).

At this locality, Prichard Formation in the thrust sheet has a strongly developed spaced to slaty cleavage containing pervasive mineral elongation lineations. Cleavage orientations vary between 320°-345°/20°-60°SW, with mineral lineations oriented −220°/40°−70° (Fig. 7a). Also present are minor fault surfaces containing stretched minerals and striations (minor faults = 330°−350°/45°-80°SW; striations = 220°-250°/90°-55°; Fig. 7b) that are consistent with cleavage and mineral lineations. We interpret both sets of lineations as the projections of the maximum stretch in the fault plane and approximate net slip direction of the Moyie thrust. Greater shortening strain of rocks inside the wedge compared to those outside is indicated by the local transposition of bedding and cleavage in the wedge.

Mylonitic Granite Along the Moyie Thrust

The Dry Creek stock is deformed along its western margin by the Moyie thrust. The trace of the Moyie thrust lies in Bull Lake Valley, where it is covered by glacial gravel and alluvium (Fig. 1, location d). However, shallowly southwest-dipping shear surfaces (C-surfaces) and foliation (S-surfaces) that form a composite S-C mylonitic fabric (Bertie and others, 1979) are well exposed along the east side of the valley.

The mesoscopic C-surfaces are expressed geometrically as northwest-striking dip slopes along a series of east-trending truncated spurs along the eastern side of Bull Lake Valley (Gibson, 1948). The schistosity is close in strike to the C-surfaces but dips more steeply southwestward. The schistosity consists of medium- to fine-grained biotite and muscovite anastomosing around planar to sigmoidal aggregates of quartz and feldspar (Fig. 8a). K-feldspar augen, common in the mylonite, have locally undergone grain-size reduction by fracturing. C-surfaces have a consistent spacing of 2-5 mm and make angles of 30°-40° with S-surfaces. A moderately to well-developed stretching lineation composed of elongated quartz grains, along with the angle created by the two planar fabrics,
provides shear sense indicators (Simpson and Schmid, 1983; Choukroune and others, 1987) that indicate consistent top-to-the-northeast shear along the Moyie thrust (Fig. 8b).

The mylonitic fabric can be categorized as Type II S-C fabric in the classification of Lister and Snoke (1984) because of the preferred development of C-surfaces over S-surfaces and the presence of abundant kinked and sigmoidal muscovite crystals. The fabric meets Paterson and others’ (1989) criteria for solid-state fabrics that postdate pluton emplacement and crystallization. Solid-state deformation is consistent with the contrast between crystallization and fabric ages determined by U-Pb and \(^{40}Ar/^{39}Ar\) dating discussed below.

West-directed Structures—The Snowshoe Thrust System

Intervening between the dominant east-directed Moyie and Libby thrust systems is the west-directed Snowshoe thrust system (Figs. 5b and 6b). Known formerly as the Snowshoe fault (Gibson, 1948; Wells and others, 1981), and shown as an east-directed thrust by Harrison and others (1992), these faults have been identified by us as rare examples of west-directed thrusts in the Montana thrust belt. The regional distribution of west-verging structures in the southeastern Canadian Cordillera is reviewed and discussed by Price (1986).

The main Snowshoe thrust can be traced from the southeast Cabinet Mountains northward for at least 100 km, from Rock Lake to the British Columbia–Montana boundary (Fig. 1; see also Harrison and others, 1992). The slip direction of the thrust as defined by striations on fault surfaces (Fig. 9) plunges 45°–50° toward 065°–070°, on a moderately dipping fault surface (strike/dip = 340°–350°/45°–65°NE). Shortening across this thrust varies from a few hundred meters near Rock Lake (Fig. 6a), to 4 ± 1 km in the northeast Cabinet Mountains (Fig. 4). We mapped a related low-angle thrust, the Libby Lakes thrust (R. Franklin, personal commun., 1991), in the footwall of the Snowshoe thrust, about 1–1.5 km structurally below the main fault (Figs. 6a and 6b). The southward decrease in displacement on the Snowshoe thrust near Rock Lake is due, in part, to displacement transfer from the Snowshoe to the Libby Lakes thrust. East of Rock Lake, cumulative displacement on these two faults is about 1 km. A system of closely spaced imbricate west-directed thrusts that repeats the Burke and Revett Formations occurs in a

Figure 5. Geologic maps of the (a) Dry Creek stock and surrounding area and (b) the Rock Lake area. Map symbols include bedding with dip angle; thrust faults—teeth on upper plate; normal faults—ball on downthrown side; Yd = diorite of probable Precambrian age. In a, samples discussed in text are indicated by numbered locations: 1 = sample DC-10; 2 = sample DC-57; 3 = sample DC-26. In b, locations are 1 = Rock Lake; 2 = Isabella Lake; 3 = St. Paul Pass; 4 = Rock Creek; EPA = Elephant Peak anticline. Locations of cross sections B–B’ and C–C’ (Fig. 6) are indicated. Stars are the locations where kinematic data from thrusts were gathered (data presented in Fig. 9). Both maps incorporate supplementary data on location of contacts from Wells and others (1981).
zone within 1 km below the main strand of the southern part of the Snowshoe thrust and appears to be the northward continuation of the Libby Lakes thrust (Figs. 5b, 6b, and 10a). Minor bedding-parallel normal faults on the steep, nearly vertical west-facing limb of the Elephant Peak anticline (Figs. 6a, 6b, and 10b) offset the Libby Lakes thrust and west-verging folds. West-directed thrusts are not recognized south of Wanless Lake (Fig. 5b) where the west-verging folds merge with northeast-verging folds (Gibson, 1948; Harrison and others, 1986).

West-verging Folds and Axial Planar Cleavage

Associated with the imbricate thrusts are large-scale (~3- to 5-km wavelength) asymmetric folds that are overturned toward the west (Figs. 6b and 10c). Axial planar spaced cleavage dips at shallow angles eastward, producing a strong intersection lineation with bedding (Fig. 11). The range of cleavage orientations (320°–015°/20°–80°NE) and steepening of the cleavage and lineations in the Rock Lake area are attributed to movement on the Rock Lake fault (Fig. 5b). Mapping the cleavage and lineations helps delineate the relative ages of the east- and west-directed structures. East-dipping fabrics when traced westward in the Rock Lake area are abruptly overlain by west-dipping fabrics in the hanging wall of the Moyie thrust (Fig. 5b, location 4). The juxtaposition of west-dipping cleavage in the Moyie thrust sheet over the east-dipping cleavage near Rock Creek suggests that emplacement of the Moyie thrust sheet postdated development of the Snowshoe thrust and associated structures. About 4 km...
Figure 6. (a) Cross section through the Rock Lake area that includes the Libby Lakes and Snowshoe thrusts and the fault-bounded wedge of Prichard Formation in the hanging wall of the Moyie thrust. Zones of west- and east-directed structures are indicated. (b) Cross section through the Isabella Lake area illustrating west-directed imbricate thrusts of the Libby Lakes and Snowshoe thrust systems, cut by later bedding-plane parallel normal faults. See Figure 5 for explanation of symbols.

southeast of Rock Lake, the Moyie thrust truncates west-verging folds and fabrics of the Snowshoe thrust system (Harrison and others, 1986), indicating that the Snowshoe thrust sheet there was also overridden by the Moyie thrust sheet.

The relative age and slip direction of the Snowshoe thrust suggest that the east-directed thrust system comprises two parts: an upper plate (Moyie) above the Snowshoe thrust, and a lower plate (LTB) below the Snowshoe thrust (Fig. 4). Despite its relatively small displacement, the along-strike continuity and west-directed displacement of the Snowshoe thrust suggest that it played an important kinematic role in the development of the western Purcell anticlinorium. West-directed structures are a prominent element of the regional structural geometry in the southeast Canadian Cordillera (Price, 1986), where they are spectacularly developed in the Selkirk Fan structure (Brown and Tippet, 1978). In western Montana and northern Idaho, most of these are developed adjacent to, or between, plutons (Gwinn, 1961; Harrison and Schmidt, 1971). The presence of these structures in the hinterland but not farther into the foreland suggests that syntectonic magmatism and metamorphism may promote the development of this structural style.

Downdip projection of the Snowshoe thrust indicates that it must encounter the Libby thrust. Thus, the Snowshoe thrust is expected either to have a crosscutting relationship with the Libby thrust or to merge with it. Without any subsurface information on the Snowshoe thrust, cross sections constructed from surface geology are the only means to assess its geometry at depth. Two plausible options for the age and kinematic role of the Snowshoe thrust with respect to the LTB and the Moyie thrust are (1) that the Snowshoe thrust is a backthrust to the east-directed LTB/Moyie thrust system or (2) that it postdates those east-directed thrusts (Fig. 12). Regardless of which is correct, some degree of hindward imbrication is evident, suggesting emplacement of the Moyie thrust sheet late in the thrusting history of the Cabinet Mountains.

Rock Lake Fault

The Rock Lake fault is a north-northwest-striking fault, with a highly variable but generally steep dip, that juxtaposes younger Belt rocks on the east against older Belt rocks on the west (Fig. 5b). The fault crosscuts west-directed structures related to the Snowshoe thrust, making it a younger feature. The
northerly striking, en echelon down-to-the-east minor normal faults lie in the footwall of the Hope fault, making an angle of about 20° with the strike of the Rock Lake fault (Fig. 5b). Kinematics of the Rock Lake fault were documented at several locations in the Rock Lake area. Where exposed, the fault has an orientation of 165°-185°/70°-90°E (Fig. 13). Fault plane striations (Fig. 13) and slickensides have a broad range of orientations (100°-150°/35°-80°), but beds show a consistent down-to-the-southeast sense of offset, notwithstanding the possibility of multiple episodes of movement.

Two locations were mapped where west-verging folds and west-directed thrusts of the Snowshoe thrust system are cut by the Rock Lake fault (Figs. 5b, 6a, and 6b). East-dipping cleavage axial-planar to west-verging folds within the Snowshoe thrust system occurs both west and east of the fault, becoming highly distorted in the vicinity of the fault. Imbricate thrusts in the footwall of the Snowshoe thrust that are cut by the Rock Lake fault near Rock Lake (Figs. 5b and 6a) have no observable offset counterparts west of the Rock Lake fault. This is probably due to uplift and subsequent erosion of the footwall of the Rock Lake fault.

A lower (older) age limit for the Rock Lake fault is provided by dating of the Hayes Ridge stock, a small two-mica granite with spectacular, large (1-4 cm across) euhedral muscovite phenocrysts, and a well-developed contact aureole that lies east of the Rock Lake fault in the central Cabinet Mountains (Fig. 5b). The stock is apparently exposed only to the east of the Rock Lake fault, suggesting that the fault cuts the Hayes Ridge stock (see geochronology section).

Hope Fault

At the south end of the Cabinet Mountains, the Moyie thrust is truncated by the Hope fault (Fig. 1). Controversial interpretations of the age and kinematics of the Hope fault have been reviewed by Yin (1991). As much as 8 ± 2 km of dip slip was estimated for the fault near Vermilion River in the southern Cabinet Mountains (Fillipone and others, 1992). This displacement must have caused substantial upward warping of the regional thrust décollement in the footwall of the Hope fault as interpreted in Figure 4. Our interpretation of the décollement contrasts with that of Harrison and others (1992), who assume crystalline basement slices above a gently west-dipping décollement in this part of the thrust belt.

GEOCHRONOLOGY AND THERMOCHRONOLOGY

40Ar/39Ar Method

Minerals from the granitic plutons were dated at 30–60 mesh and separated using standard heavy liquid and magnetic techniques. The minerals were wrapped in Sn foil and sealed in evacuated quartz vials (6 mm I.D.) with Fish Canyon sanidine flux monitors (FC-3) at ~5-mm intervals and were irradiated for 45 h in the H-5 position of the University of Michigan Ford reactor. Sanidine crystals from the irradiated flux monitors were fused with a 5 W Ar ion laser and analyzed for their Ar isotopic compositions. J-factors were calculated from several analyses from each monitor position, using a flux monitor age of 27.8 Ma (Miller and others, 1985). Vacuum-fused K$_2$SO$_4$ and CaF$_2$ included in the tube were used to calculate correction factors for (40Ar/39Ar)$_{Jc}$, (40Ar/39Ar)$_{Jc}$, and (39Ar/37Ar)$_{Jc}$.

Samples were then step-heated in a Ta crucible in a double-vacuum furnace. Reactive gases were removed by reaction with the hot Ta crucible wall and an SAES Ti-Zr getter. Isotopic measurements were made at UCLA using a VG 1200S automated mass spectrometer operated in the electron multiplier mode. Sensitivities for these analyses ranged from 4.6×10^{-17} mol Ar/mV to 2×10^{-17} mol Ar/mV. Argon blanks over the course of the analyses averaged 1×10^{-15} mol 40Ar in an atmospheric ratio. Tabulated results of the Ar isotopic analyses, uncorrected for neutron-produced interferences, are presented with calculated ages with one-sigma uncertainties. Uncertainties do not include error in the J-factor, which is typically ~0.5%.

U-Pb Method

Details of the U-Pb analyses are given in Table 1. The reader is referred to Gehrels (1990) for details of the techniques used.

Electron Microprobe Analyses

Analyses were performed on a Cameca Camebax in wavelength and energy dispersive mode at an accelerating voltage of 15 kV.
and with sample currents of ~10−15 nA. Natural and synthetic minerals and oxides from the UCLA collection were used as standards. ZAF corrections were applied to the raw intensities from all analyses. The limit of detectability is about ±0.02 wt% for the wavelength dispersive mode and is somewhat higher for the energy dispersive model. Sources of error include known precisions of standard element concentrations, ZAF correction accuracies, machine drift, and counting statistics. Counting errors were maintained at <1% for the standards (counting time = 20 s). Analytical results were in general reproducible within about 2% error.

RESULTS

Age of the Moyie Thrust and Dry Creek Stock

Age of the Moyie thrust has been established by dating the Dry Creek stock, which is cut by the Moyie thrust. The stock has well-developed solid-state shear fabrics only along its western margin adjacent to the Moyie thrust; the rest of the outer and interior parts of the pluton is undeformed. At the northwest edge of the sheared stock we also mapped minor fault surfaces and brecciated zones in Striped Peak argillite (Fig. 5a). 40Ar/39Ar and U-Pb zircon dating and hornblende barometry from the undeformed part of the pluton provide data on the age and depth of emplacement and a lower (older) age limit on the time of thrusting. Most of the 40Ar/39Ar age spectra are somewhat complex, involving plateau and smoothly varying segments or complex age gradients. For consistency, we have interpreted these as simply as possible in conjunction with our geologic observations. A U-Pb zircon date for the undeformed pluton (sample DC-10, Fig. 5a) does not fully agree with the 40Ar/39Ar data. A concordia plot of the data (Fig. 14) shows strong discordance with a lower intercept age of 74.1 ± 7.3 Ma and significant inherited components with an average age of ~1,680 Ma. Biotite from this sample yielded a 40Ar/39Ar apparent age of ~64.5 ± 1 Ma, corresponding to 82% of the gas released (Fig. 15a). A 40Ar/39Ar hornblende age spectrum for a second sample from the undeformed stock (sample DC-57, Fig. 5a) is saddle-shaped, with a minimum age of 85 ± 0.2 Ma and a total gas age of 93.9 Ma (Fig. 15b). Biotite from DC-57 has a relatively flat age spectrum (Fig. 15b) that gives an apparent age of ~71.4 ± 0.9 Ma for 99.4% of the gas released. Wells and others (1981) dated mircocline and biotite from an unspecified part of the Dry Creek stock by the Rb-Sr method, yielding a two-point "isochron" with an age of 71 ± 2 Ma (recalculated using new decay constants; Z. Peterman, personal commun., 1990). The contrast between the 40Ar/39Ar and U-Pb zircon dates for the Dry Creek stock may suggest that either (1) the intrusive history spanned a period of at least 12 m.y. (if errors in both samples are applied to minimize their age difference) or (2) the apparent age difference between these two sample localities, separated by 6 km, implies separate intrusive phases of the pluton. Consistently younger ages from sample DC-10 than for DC-57 suggest two intrusive phases. Furthermore, the U-Pb date comes from a petrologically similar, but hornblende-free part of the pluton. Biotite age spectra from the two samples suggest that cooling below the closure temperature of biotite occurred at different times for different parts of the pluton. The extremely high Sr initial ratio noted by Wells and others (1981) may reflect a disturbance of isotopic systematics rendering the Rb-Sr date suspect.

A second granitic pluton that lies in the footwall of the principal branch of the Moyie thrust, the Vermilion River stock (Fig. 1), is older than the Dry Creek stock, with a 40Ar/39Ar hornblende plateau age of 113.7 ± 1.5 Ma for 75.2% gas released (Fig. 15c). Harrison and others (1986) concluded that this plu-
of crystallization, for two samples each from the Dry Creek stock and the Vermilion River stock and one sample from the Lightning Creek stock (Table 2). Calculated pressures range from 2.7 to 5.0 kbar for the Dry Creek stock, 3.3 to 4.8 kbar for the Vermilion River stock, and 4.6 to 5.5 kbar for the Lightning Creek stock. The large range in pressures within a given pluton demonstrates the low precision of the calculated pressures. Crystallization depths inferred from these data are between 9 and 15 km, corresponding to mid to upper crustal levels for crystallization. The contact aureole of the Dry Creek stock is as much as 2 km wide and that of the Lightning Creek stock is ~500 m wide and contains the assemblage quartz + biotite + muscovite + andalusite + plagioclase in pelitic country rocks. Assuming equilibrium was attained in the contact aureole, the maximum pressure for the stability of andalusite is ~3.5 kbar (Holdaway, 1971). This assemblage is typical of the hornblende-hornfels facies of contact metamorphism and agrees with pressure estimates determined from Al in hornblende, at temperatures of 400–600 °C (Turner, 1981).

Muscovite neoblasts are distinguishing features in the mylonitic western part of the Dry Creek stock. Fine-grained white mica in undeformed parts of the stock occurs only as local replacement of other phases. The neoblasts lie approximately parallel to S-surfaces in the mylonite, making up a few modal percent of the rock. Besides the muscovite neoblasts, scattered patches of fine-grained white mica occur in some biotite and feldspar crystals in the mylonite. A complex gradient is present in the age spectrum of the muscovite, with apparent ages from early gas release rising from 51 ± 3 Ma to 72 Ma in the latter part of the spectrum (Fig. 15e). Age gradients of this type may be the result of a mixture of two phases of white mica of different ages, as observed in other studies (Wijbrans and McDougall, 1986; McDougall and Harrison, 1988). Pressures from Al in hornblende indicate structural levels sufficient to allow ductile deformation.

Age and Significance of the Rock Lake and Hope Faults

In the Cabinet Mountains, granitic intrusion and thrusting took place mainly during the Cretaceous. The Moyie and Snowshoe thrust systems predate the Rock Lake fault, a later extensional structure. Similar age relations to thrusts and its normal-slip kinematics suggest that the Rock Lake fault may be tectonically related to the Hope fault.

Like those of the Hope fault, the age and kinematics of the Rock Lake fault are controversial. Harrison and others (1992) interpreted it as part of an east-directed Moyie thrust system despite its postthrusting field relations. On the basis of the spatial association between faulting and ore deposits in the Revett Formation, Lange and Sherry (1983) inferred that mineralization was syn-depositional with respect to Belt strata, and involved northwest- to northeast-striking faults, including the Rock Lake fault. Structural evidence for a Precambrian precursor to the Rock Lake fault is lacking, however. Age relations established between thrust faults of the Moyie and Snowshoe systems and crosscutting relations between these thrusts and the Rock Lake fault indicate that major displacement on the Rock Lake fault occurred after ~69 to 71 Ma. Similarities in attitude and kinematics between the Rock Lake and Hope faults suggest an Eocene age for the latter. If the Hayes Ridge stock predates the Rock Lake fault as suggested by field rela-
Figure 10. West-verging structures in the Rock Lake area: a and b are photographs taken looking north at structures present in cross section Figure 6b near Isabella Lake. (a) Imbricate thrusts of the Libby Lakes system in the footwall of the Snowshoe thrust; (b) minor normal faults that offset a strand of the Snowshoe thrust; (c) view toward the southeast of west-verging overturned anticline east of Rock Lake.

Previous studies of the relationship between magmatism and tectonism in the southwest Montana thrust belt have established that magmatism and thrusting overlapped in time (Robinson and others, 1968; Schmidt and Garihan, 1983; Harlan and others, 1988). Coeval Cretaceous thrusting and magmatism are now documented in the Cabinet Mountains (this study) and in parts of the southwest Montana thrust belt (Hyndman and others, 1988). Thrusting and magmatism in the Cabinet Mountains occurred in the Late Cretaceous, concurrent with imbricate thrusting and duplex development in the east. In northern Idaho, crystallization of part of the Kaniksu batholith in the northeast Priest River complex occurred around 94 Ma (Archibald and others, 1984), which is substantially older than movement on the Moyie thrust, the first major thrust east of the batholith. The White Creek batholith, dated at about 126 Ma (Wanless and others, 1968), cuts the Hall Lake fault in the northern part of rapid cooling at about 44 Ma, with a cooling rate of ~75 °C/m.y. (Fillipone, 1993). We attribute this rapid cooling to uplift along the Hope fault.

DISCUSSION

Previous studies of the relationship between magmatism and tectonism in the southwest Montana thrust belt have established that magmatism and thrusting overlapped in time (Robinson and others, 1968; Schmidt and Garihan, 1983; Harlan and others, 1988). Coeval Cretaceous thrusting and magmatism are now documented in the Cabinet Mountains (this study) and in parts of the southwest Montana thrust belt (Hyndman and others, 1988). Thrusting and magmatism in the Cabinet Mountains occurred in the Late Cretaceous, concurrent with imbricate thrusting and duplex development in the east. In northern Idaho, crystallization of part of the Kaniksu batholith in the northeast Priest River complex occurred around 94 Ma (Archibald and others, 1984), which is substantially older than movement on the Moyie thrust, the first major thrust east of the batholith. The White Creek batholith, dated at about 126 Ma (Wanless and others, 1968), cuts the Hall Lake fault in the northern part...
of the Purcell anticlinorium in southeast British Columbia, suggesting that thrusting there occurred earlier during the Cretaceous (Price, 1981). Hoy and van der Heyden (1988) showed that the St. Mary fault, part of a system of east- to southeast-directed reverse faults that includes the Moyie thrust in southeast British Columbia, was crosscut by a 94 Ma (U-Pb zircon) quartz monzonite stock. The St. Mary fault is thus either older than the Moyie thrust, or else the segment of the Moyie thrust we dated developed later than in the north.

Dip slip on the Moyie thrust diminishes from about 8 km in southeast British Columbia to about 4 km in the Cabinet Mountains in Montana. This decrease in slip on the Moyie thrust in Montana might be compensated by slip on the oppositely directed Snowshoe thrust and in the Libby thrust belt, both of which are absent in British Columbia. These north to south temporal and kinematic variations may account for the change in structural style between the Canadian and U.S. segments of the Purcell anticlinorium. The anticlinorium in British Columbia may have experienced greater combined Jurassic and Cretaceous shortening than it did in Montana (compare Price, 1981, with Harrison and others, 1980). The older ages of east-directed thrusts in southern British Columbia may also indicate that thrusting in the Purcell anticlinorium was diachronous, younging toward the south.

CONCLUSIONS

The Moyie thrust is interpreted from crosscutting relations as the youngest structure among a system of east-directed (Moyie thrust, Libby thrust belt) and west-directed (Snowshoe thrust) structures that developed during the Late Cretaceous (~71–69 Ma). Because thrusting was broadly coeval in the Cabinet Mountains, the Montana Disturbed belt (Hoffman and others, 1976), and parts of the southwest Montana thrust belt (Robinson and others, 1968; Perry and Sando, 1982; Harlan and others, 1988), the intervening area occupied by the Purcell anticlinorium may have acted as a linking structure between the hinterland and foreland. If the Purcell anticlinorium developed by up-to-the-
east ramping of Belt strata during the Paleocene as suggested by Price (1981) and Archibald and others (1984), then structures toward the foreland should in general be younger than those in the hinterland. Our results indicate that episodes of thrusting in the hinterland and foreland occurred synchronously in the Late Cretaceous and were coeval with hinterland magmatism. Thus, the décollement linking these two regions apparently was established during the early stages of thrusting, as suggested by Yin and Kelley (1991). The foreland fold and thrust belt behaved as a wedge that experienced synchronous thrusting in its front and rear portions, suggesting that hinterland magmatism and thrusting was linked with thin-skinned thrusting farther onto the craton. These findings agree with predictions from mechanical models of thrusting, especially with respect to the wider spacing and steeper dips of thrusts expected in the thicker part of the thrust wedge, and to the presence of back thrusts (Davis and others, 1983; Chapple, 1978; Yin, 1993).

Throughout the hinterland of the Cordillera in the northwest United States and adjacent Canada, thrusting occurred near the locus of magmatism (Price, 1981; Hyndman and others, 1988), where magmatic heating may have contributed to thermal weakening of the lithosphere. By early Eocene, however, magmatism became associated with extensional tectonics (Parish and others, 1989; Armstrong and Ward, 1991; Harms and Price, 1992). Extensional structures that crosscut thrusts in the hinterland developed after ~49 Ma, the age of the youngest rocks cut by the Hope fault (Hope sills; Fillipone and others, 1992). The Hope fault, southern Rocky Mountain trench fault system, and the Priest River and Bitterroot core complexes developed in the middle to late Eocene, when magmatism and extension were superposed on the foreland fold and thrust belt.

ACKNOWLEDGMENTS

This work forms part of a Ph.D. dissertation by J. Fillipone at the University of California, Los Angeles. We thank T. Mark Harrison for use of 40Ar/39Ar laboratory facilities at UCLA and Matthew Heizler for direction in the lab. George Gehrels and Moira Smith at the University of Arizona provided U-Pb analyses of the Dry Creek stock. Zell Peterman of the U.S. Geological Survey kindly provided the Rb-Sr data from the Dry Creek stock. Brian Gay and Karen Mitchell provided able assistance in the field. Russell Franklin of Kennecott Exploration (Spokane, Washington) offered insight into the geology of the Cabinet Mountains, provided samples of the Hayes Ridge stock, and kindly gave logistical support. We thank U.S. Forest Service District Ranger James Mershon (Cabinet District, Kootenai National Forest) for his interest in our project in the Cabinet Mountains.

Figure 14. U-Pb concordia diagram of zircon analyses from sample DC-10. A concordia intercept age of 74.1 ± 3.3 Ma (95% confidence level) and an upper intercept age of ~1680 Ma indicate a significant inherited component in the zircons from this sample.
Mountains Wilderness Area. Discussions with Mark Harrison and suggestions by Jim Dunlap helped us improve an earlier draft of this paper. Reviewers Donald W. Hyndman and Raymond A. Price keenly pointed out areas for improvement, and we gratefully acknowledge them. Associate editor Philippe Erdmer also provided helpful suggestions. Funding was provided through National Science Foundation Grant EAR 92-17525 to A. Yin, and grants through National Science Foundation of America, American Association of Petroleum Geologists, and the Steven S. Oriel Memorial Research Fund of the Colorado Scientific Society.

REFERENCES CITED
Berthel, D., Choquette, P., and Jospeau, P., 1979, Orthogneiss, mylonite and non coaxial deformation of granites: The example from the South Armorican Shear Zone: Journal of Structural Geology, v. 1, p. 31-42.
Chapple, W. M., 1978, Mechanics of thin-skinned fold-and-thrust...
FILLIPONE AND YIN