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Mechanics of wedge-shaped fault blocks 
2. An elastic solution for extensional wedges 

An Yin 

Department of Earth and Space Sciences, University of California, Los Angeles 

Abstract. Listric, planar, low-angle, and high-angle normal faults are common in hanging walls 
of detachment faults. An elastic model has been developed to evaluate the role of basal friction, 
wedge geometry, pore fluid pressure within the wedge, and boundary conditions applied along 
the wedge rear in controlling the stress distribution in an extensional fault wedge. This model 
assumes a stress-free condition on the top and frictional sliding on the base of the wedge, respec- 
tively, a linear variation of stress components as a function of depth along the wedge rear, and a 
uniform horizontal stress applied on the wedge toe. The model predicts that (1) for the surface 
slope equal to zero, a thin wedge favors development of high-angle and planar faults, whereas 
a thick wedge favors development of low-angle and listric normal faults; variation of pore fluid 
pressures along the basal detachment fault hardly affects the predicted fault geometry; pore fluid 
pressure within the wedge is critical in controlling the state of stress in the wedge: higher values 
of the internal pore fluid pressure promote low-angle normal faulting and locally high-angle re- 
verse faulting; (2) variation of surface slope and the uniform horizontal normal stress applied at 
the wedge toe does not affect the predicted fault geometry appreciably, although the distribution 
of deviatoric stress magnitude changes for different cases; and (3) listric normal faults are pre- 
dicted in all computations and the fault curvature increases as the vertical gradient of the hori- 
zontal normal stress along the wedge rear, the wedge angle (surface slope + dip angle), and the 
internal pore fluid pressure increase. The model provides a simple conceptual guide to decipher- 
ing the formation of complex fault geometries and cross cutting relationships as a function of 
mechanical parameters related to geologic processes and settings. For example, it provides an ex- 
planation for why low-angle normal faults cut high-angle normal faults in hanging walls of some 
detachment fault systems in the U.S. Cordillera. 

Introduction 

Low-angle normal faults of regional extent (detachment 
faults) are dominant structures in extensional terranes [e.g., 
Wernicke, 1981;/Lister and Davis, 1989]. Intense geologic 
investigations of low-angle normal fault systems in western 
United States and elsewhere in the world in the last two 

decades have greatly enhanced our understanding of their 
geometries and kinematics [e.g., Gibbs, 1984; ;Lister et al., 
1986; Morle•l, 1989; Tulloch and Kirnbrough, 1989; Wer- 
nicke, 1993; Dinter and Rollden, 1993]. However, mechan- 
ical conditions for the initiation and the development of low- 
angie normal fault sytems remain poorly understood. There 
are three fundmental problems regarding their mechanics. 
First, the directions of principal stresses are commonly as- 
sumed to be horizontal and vertical during extension, and 
thus normal faults should initiate at a dip of about 60 o as 
predicted by the Anderson [1942] theory. If so, why do 
low-angle normal faults initiate as observed in the field [e.g., 
Wernicke, 1993]? Second, translation of a large rock mass 
along a low-angle surface requires an extremely low friction 
on the surface [Hubbert and Rube•l, 1959], what are the 
mechanisms that caused friction reduction? Third, once a 
throughgoing master detachment fault forms and begins to 
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move, what is the state of stress in its hanging wall and how 
does stress distribution vary as a function of basal friction, 
wedge geometry, and boundary conditions applied on the 
wedge rear and the wedge toe? The first question has been 
addressed by Yin [1989, 1990]. He attributed the initiation 
of low-angle normal faults to a combination of shearing on 
the base of the upper crust that rotates the stress orienta- 
tion [Y in, 1989] and the presence of high pore fluid pressure 
that weakens the upper crust [Y in, 1990]. Yin [1993] also 
suggested that low-angle normal faults can initiate in a com- 
pressional wedge when the friction is high along the basal 
thrust. Initiation of low-angle normal faults is thought to 
be related to either upward warping of the Moho [Spencer 
and Chase, 1989] or relaxation of the upper crust behav- 
ing viscoelastically and being sheared at its base [Melosh, 
1990]. 

The second problem of why motion can occur along low- 
angle detachment faults is discussed by Fors•lth [1992], 
A•en [1992], and Xiao et al. [1991]. Forsyth investigated 
the force balance between the regional stress, friction along 
a normal fault, and stress induced by lithospheric flexure 
caused by slip along the normal fault. He suggested that mo-' 
tion along low-angle normal faults is favored. A•en [1992] 
reviewed geologic features in detachment fault zones that 
may indicate the presence of high pore fluid pressures dur- 
ing their development. Low friction induced by high pore 
fluid pressures in the detachment fault zones may have facil- 
itated motion along low-angle normal faults. The stability 
of extensional wedges moving along low-angle normal faults 
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was also discussed by Xiao et al. [1991], who assumed that 
the wedges deform following the Coulomb fracture criterion. 
They demonstrated that wedges narrower than the critical- 
Coulomb-wedge geometry can slide stably along detachment 
faults without internal deformation. 

Geologic studies in the last two decades have revealed 
complex fault geometries and cross cutting relatlonsips in 
hanging walls of detachment faults [e.g., Anderson, 1971; 
Proffett, 1977; Wernicke and Burchfel, 1982; Gibbs, 
1983; Miller et al., 1983; Lister and Davis, 1989; 
and Dunn, 1992], suggesting that the state of stress is com- 
plex. For example, in some extensional terranes, high-angle 
normal faults consistently cut low-angle normal faults [e.g., 
Proffett, 1977], whereas in others, low-angle faults cut high- 
angle faults [e.g., Lister and Davis, 1989]. Thus under- 
standing the factors that control the state of stress in de- 
tachment fault hanging walls is a key to deciphering the 
causes for the observed variability in fault geometries and 
fault kinematics. 

Because the geometry of detachment fault hanging walls 
is approximately wedge-shaped, an elastic wedge model has 
been developed in this paper. The model relates the stress 
distribution in an extensional wedge to the basal friction, the 
wedge geometry, the wedge length, and the boundary condi- 
tions applied on the wedge rear and the wedge toe. The for- 
mulation of this model is similar to that of the compressional 
wedge model developed by Yin [1993] except that the slip 
along the basal-bounding fault is in the opposite sense. A 
simple elastic wedge model was developed earlier by Spencer 
[1982] to inveistigate the stress distribution in hangingwalls 
of detachment faults. However, his model neglects frictional 
traction along detachment faults and pore-fluid pressures in 
the wedge, and thus it is unable to evaluate how pore fluid 
pressure ratios within and along the base of the wedge affect 
the state of stress in extensional wedges. 

Detachment faults are commonly domal and basinal due 
to isostatic rebound or constrlctional strain field [e.g., Yin, 
1991]. The model developed below neglects mechanisms and 
processes for the formation of domal and basinal geometries. 
Thus it applies to planar detachment faults or early stages 
of their development when their geometries were planar. 

Theory 

The geometry of an elastic-brittle extensional wedge and 
the framework of reference used in the calculations are 

(0, 0) 

shown in Figure 1, where c• is the surface slope, • is the 
dip angle of the basal detachment fault, 0 = c• + •, and a•0 
is the prescribed wedge length. Note that the a• axis is par- 
allel to the surface and points in the upslope direction. The 
sign convention follows that of elasticity, i.e., tensile stress 
is positive. 

The stress equilibrium equations of a porous continuum 
in the a• and y directions for a plane stress condition are 

Oz + 0y +X,-O (1) 

c9• + Oy +Y,--O (2) 
where 

X, - -(1 - ,•)p,g sin a - -p,g sin a (3) 

Y• = (1 - ,•)p,g cosa -- p,g cosa (4) 

and Ps is the average density of rock composing the wedge, 
,• is the pore fluid pressure ratio within the wedge, g is 
the acceleration of gravity, Pe -- (1 - ,•)Ps is the effective 
density, cr'-'•= and cr'-'yy are effective normal stress components, 
and crzy -- cryz are the shear stress components in the a• and 
y directions. 

The boundary conditions are a stress-free upper surface 
and a linear variation of normal and shear tractions with 

depth along the wedge rear, i.e., 

(s) 

y) - z + Sy (6) 

y) - Cy 

where A, B, and C are prescribed constants that define 
the boundary condition. This assumed boundary condition 
along the wedge rear is based on in situ stress measure- 
ments [McGarr and Gay, 1978] which suggests that ver- 
tical and horizontal normal stresses are generally a linear 
function of depth. The boundary condition along the base 
of the wedge is assumed to follow Amonton's law [Jaeger 
and Cook, 1979] 

rb(Z,y- ztan0) -- pb(1 -- /•b)•b(Z,y -- ztan0) (8) 

x0 

(L/cosa 

Figure 1. Framework of reference and sign convention used in the model. L, critical length of 
unfractured wedge toe; c•, surface slope; •, dip of the detachment fault bounding the base of the 
wedge; and 0 = c• + •, wedge angle. 
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where •b is the coefficient of friction along the fault plane, •b 
is the normal stress component across the basal thrust plane, 
rb is the shear stress component along the basal detachment 
fault plane, and ,•b is the pore fluid pressure ratio along the 
fault plane. •b and rb can be related to stress components 
cr'"•,, cr'-•, and cr• along the basal plane by 

(9) 

• -- cr•u(l •' - rn 2) + (•uu - •)lrn (10) 
where I- -sin 0 and m- cos 0. 

I have obtained a solution of the above problem by as- 
suming that the Airy stress function has the form 

•!, - 1 kla• 3 q- 1 2 1 1 ya 

1 k z• a 1 1 k 1 + + + 
where •I' satisiles the biharmonic equation V4•I , -- 0. This 
gives 

We can now write the stress distribution in the wedge 

rr'"•z -- kaz q- k4y q- ks q- pegz sin c• (20) 
er• = -p•gy cosa (21) 

From (16), (17), and (18), we can see that if ks -- O, then 
determination of ks is independent of the prescribed wedge 
length, a•o. In this special case, the solution of stress distri- 
bution represented by (20), (21), and (22)is self-similar. 

Using the boundary conditions along the wedge rear 
represented by (6) and (7) and comparing them with (20) 
and (22), we obtain the following relations: 

•-•.(zo, y) - A + By - kazo + k4y 

+ks + p•gzo sin c• (23) 
er,•(•o, y) - Cy - -kay (24) 

where A - kazo + pegzosinot q- ks, B - k4, and C -- -ks. 
By observing that ka is a function of k4 in (16), we find 
that B and C are related. Thus, prescribing the value of 
k4 and ks is equivalent to knowing the boundary conditions 
(i.e., the value of A and B) at the wedge rear. Parameter 
B -- k4 represents the gradient of cr"'•z in the y direction 
along the wedge rear. 

Equation (8) provides the constraint on the shear traction 
on the basal surface. As k3, k4, and ks are known, the 
normal traction along this surface can also be derived from 

024 1 1 

where k l to k8 are constants, their values being determined 
to fit the boundary conditions. Equation (5) requires that 
k l -- k2 = k6 - k? - 0. The remaining constants ks, 
k4, ks, and ks are determined by the following constraints. 
First, the stress magnitude at the toe of the extensional 
wedge is assumed to be known, giving 

(r'-•(O, O) -- k8 -- etc. (15) 
This condition is equivalent to a uniform normal stress cr 0 
in the • direction applied throughout the wedge. Constant 
ks represents the gradient of O•=z/Oy in the • direction. 
Because this gradient varies little in a large region shown 
by the result of in situ stress measurements [McGarr and 
Gay, 1978], ks is assumed to be zero. Finally, k3 can be 
determined by (8), (9), and (10) as a function of k4 and k8 

--k4a12 q- bl 
= 

all 

where 

- - s - - sl 
a•z -- z0sin z 011 - tan Ot•b(1 - A,)] (18) 

b• -- pegzo sin O[(sin a cos • + cos a sin •) 
--pb(1 -- A)(sin a sin O - cos a cos c•)] 

+ k8 sin O[cos 0 -/•, ( 1 - A) sin O] (19) 
and a•o is the length of the extensional wedge. 

•(z, y -- z tan O) -- 12(kaz + k4z tan0 + ks 

+pe•/z sin a) + rn2(-pegz tanO cos ex) 

q-21m(-kaz tan O). (25) 
Thus, equations (5), (6), (?), (8), and (25) provide a com- 
plete set of boundary conditions around an extensional 
wedge. 

Using (20), (21), and (22), the principal stress directions 
and the maximum shear stress (=deviatoric stress) can be 
calculated by 

1 2rrz• ) (26) •b -- • tan -• (•= _ rr'-'• 
and 

respectively, where •b is the angle between the maximum 
tensile stress • and the z axis. Using (26) and (27), and ap- 
plying the Coulomb fracture criterion with the assumption 
that an angle of internal friction •b of 30 ø, the trajectories 
of predicted fault patterns and distribution of the maximum 
shear stress can be calculated. 

Results 

Using the elastic solution for extensional wedges derived 
above, the roles of wedge geometry, basal friction, internal 
pore fluid pressure, wedge length, and boundary conditions 
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applied on the wedge rear and toe in controlling the state 
of stress are evaluated. Figure 2 shows the distribution of 
deviatoric stress and the predicted fault pattern as a func- 
tion of wedge geometry for ks -- 10 bars, k4 -- -0.8pg, 
)• -- )• -- 0.4, and g0 -- 50 kin. For c• '- 0 ø and • -- 10 ø, 
nearly planar normal faults are predicted (Figure 2a). If 
the surface slope cz remains as zero, but the dip angle • in- 
creases to 20 o (Figure 2b), the normal faults predicted are 
more curved (cf. Figure 2a). If the surface slope decreases 
to cz ---- -30 and the dip angle remains the same as • = 20 ø, 
the predicted fault pattern (Figure 2c) does not change ap- 
preciably from that shown in Figure 2b. However, if the 
surface slope increases, the predicted normal faults are less 
curved and dip at shallower angles (Figure 2d) compared 
to those in Figure 2b. For a detachment fault with its dip 
angle/• ---- 45 ø (Figure 2e), the predicted normal faults are 
high-angle in the upper part of the wedge and low-angle in 
the lower part of the wedge. The distribution of the devia- 
toric stress in this case is quite different from that shown in 
Figure 2 b. 

Because the stress solution represented by (20), (21), and 
(22) is self-similar for ks -- 0, the predicted fault pattern 
for extensional wedges with various lengths should be the 
same, although the maximum magnitude of deviatoric stress 

in these wedges may change. Figures 3a, 3b and 3c show dis- 
tributions of deviatoric stress and predicted fault patterns 
for wedge length of g0 = 10 km, 50 km, and 100 km, re- 
spectively. Other parameters are chosen to be ks = 0 bars, 
k4 = -0.Spg, c• - 0 ø, •3 - 20 o , and /• -- • = 0.4. We 
can see that the predicted geometries of fault pattern for the 
three cases are identical. However, as the wedge length in- 
creases, the maximum value of deviatoric stress in the wedge 
increases drastically. 

The role of pore fluid pressures within and along the base 
of an extensional wedge is examined. Figure 4a shows the 
distribution of deviatoric stress and the predicted fault pat- 
tern for ks = 10 bars, k4 -- -0.Spg, • = 0.4, • = 0.9, 
g0 -- 50 km, c• -- 0 ø, and • -- 20 o . Although /• = 0.9 
in Figure 4a is much greater than • -- 0.4 in Figure 2b, 
the predicted fault patterns are quite similar for the two sit- 
uations. However, the maximum value of deviatoric stress 
increases as the basal pore fluid pressure ratio decreases. 
When • and/• increase to 0.9 (Figure 4b), both the maxi- 
mum value of deviatoric stress and the fault pattern change 
dramatically compared to those in Figures 4a and 2b. In 
this case, listtic and low-angle planar normal faults are pre- 
dicted. If the basal pore fluid pressure ratio decreases from 
)•=0.9 to )•=0.4 but the pore fluid pressure ratio in the 
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Figure 2. Distributions of deviatoric stress and predicted fault patterns as a function of wedge 
geometry. Parameters are chosen to be ks -- 10 bars, k4 -- -0.Spg, )• -- )• -- 0.4, and g0 - 50 

I = 10ø' (b) a-O ø and/•--200 (c) a=-30 and/•-200 (d) a-30 and km. (a a=O ø and/•0o , , f]--20 ,and(e) a- and/•-300 . 
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Figure 2. (continued) 

wedge remains as high as • --' 0.9 (Figure 4c), we find that 
the fault pattern is similar to that in Figure 4b. However, 
the maximum value of deviatoric stress in the wedge is less 
than that in Figure 4b. 

The role of the normal stress component in the ß direc- 
tion applied on the wedge toe is evaluated in Figure 5. It 
shows distributions of deviatoric stresses and predicted fault 
patterns for ks -- 30 bars (Figure 5a) and-10 bars (Figure 
5b), respectively. The rest of the parameters are assumed 
to be a -- 0 ø, • -- 200 , k4 '- -O.9pg, • -- 0.4, • -' 0.9, 
and •o --- 50 kin. We can see that the fault pattern and 
the distribution of deviatoric stress in both situations are 
similar. 

The last parameter to be evaluated is k4, the vertical 
gradient of the normal stress component in the ß direction 
along the wedge rear. Figure 6 shows distributions of devi- 
atoric stress and predicted fault patterns for k4 ---- -1.3pg 
(Figure 6a) and k4 -- -0.5pg (Figure 6b). For both cases, 

we assume that o• -- 0 ø, • -- 20 ø, ks -- 10 bars, • -' 0.4, 
• - 0.4, and •o -- 50 km. We find that the curvatures of 
the predicted normal faults are appreciably different in that 
the greater value of k4 (e.g., k4 -- -0.5pg) favors higher- 
angle and more planar faults. 

Discussion 

Curvature of Normal Faults 

Listtic normal faults are common features in extensional 

wedges [e.g., Wernicke and Burchfiel, 1982; Gibbs, 1984]. 
The results of the simple mechanical model presented above 
indicate that listtic normal faults are generally favored in 
wedge-shaped hanging walls, although their curvatures can 
vary depending on the boundary conditions applied. In par- 
ticular, the wedge geometry, the pore fluid pressure, and the 
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Figure 3. Distributions of deviatoric stress and predicted fault patterns as a function of wedge 
length. Parameters used in the calculations are/cs - 0 bars, k4 - -0.Spg, a - 0 ø,/• - 20 ø, and 
J• = J•b - 0.4. (a) •0 = 10 km, (b) •0 = 50 km, and (c) •0 = 100 km. 

stress gradient along the wedge rear can all affect the geom- 
etry of fault initiation in an extensional wedge. Thin wedges 
favor the development of high-angle and more planar normal 
faults, whereas thick wedges favor the development of more 
curved listric and low-angle normal faults. Although pore 
fluid pressures along the base of the wedge hardly affect the 
geometry of potential normal faults in extensional wedges, 
the pore fluid pressure within extensional wedges is the key 
factor governing the state of stress in the wedges. Espe- 
cially, a high pore fluid pressure within the wedge favors the 
initiation of listtic and low-angle normal faults (Figures 4b 
and 4c), whereas a low pore fluid pressure within the wedge 
favors high-angle and more planar normal faults (Figures 2b 
and 4a). Because the boundary conditions and wedge ge- 
ometries can vary among extensional terranes, occurrence of 
complex fault geometries should be expected as illustrated 
by the model discussed above. In addition, as the bound- 
ary conditions applying to one individual detachment fault 
system may vary in time during the course of its evolution, 

faults with different geometries in the hanging wall may cut 
each other as a result of change in the stress state in response 
to the change in boundary conditions around the extensional 
wedge. 

Critical Length of an Unfractured Extensional 
Wedge 

A common feature to the results of the above calcula- 

tions is that the magnitude of deviatoric stress decreases to- 
ward the wedge toe. This distribution implies that if normal 
faults are initiated in an extensional wedge, they should be- 
gin to develop first from the wedge rear and then progress 
toward the wedge toe. This sequence of faulting is excel- 
lently demonstrated by Xiao et al. [1991] in their sandbox 
experiments (Figure 7). We can visualize the following se- 
quence of events that may occur during the development 
of a detachment fault system: (1) a throughgoing detach- 
ment fault is initiated, (2) frictional sliding occurs along the 
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Figure 4. Distributions of deviatoric stress and predicted fault patterns as a function of pore 
fluid pressure ratios within and along the base of the wedge. Parameters used in the calculations 
are ks - 10 bars, k4 - -0.8pg, g0 - 50 km, a - 0 ø, and •- 20 ø. (a) • - 0.4 and •--0.9, (b) • 
- 0.9 and ,•b----0.9, (c) ,• -- 0.9 and ,•b----0.4. 

detachment fault surface, (3) development of hanging wall 
normal faults begins from the wedge rear, and (4) the size of 
the unfaulted part of the wedge becomes smaller as the de- 
formational front progresses toward the wedge toe. Finally, 
there would be a critical wedge length L, where a shorter 
wedge cannot be further fractured. Determination of this 
critical length (L) is similar to that of the Hubbert-Rubey 
toe for compressional wedges as calculated by Yin [1993]. 
Using the same approach, the relation between the critical 
wedge length (L) and the dip angle of the detachment fault 
(•) is shown in Figure 8 with a -- I ø, )•b =0.4, )• -- 0.4, 
ks -- 0, and k4 -- -0.9pg. The cohesive strength (So) is 
chosen to be 50 bars, 100 bars, and 150 bars, respectively. 
We find that the critical wedge length decreases monoton- 
ically as the dip angle increases. This relationship clearly 

demonstrates that not only doeõ the strength of the exten- 
sional wedge control the length of the unfractured wedge 
toe, but the configuration of the wedge is also important as 
well. 

Sequence of Normal Fault Development in Ex- 
tensional Wedges 

It has been observed that master detachment faults as 

well as minor normal faults in their hanging walls can ro- 
tate during continental extension [e.g., Proffett, 1977]. A 
consequence of rotating master detachment faults is that 
the extensional wedge geometry may change in time as de- 
tachment fault systems are evolving. Such a change would 
produce a.change in the state of stress in the wedges. For 
example, shallowing master detachment faults may lead to 
a change in stress condition from favoring development of 
listtic and low-angle normal faults to one favoring planar 
and high-angle normal faults, whereas steepening may lead 
to a change in stress condition from favoring development of 
more planar and high-angle faults to favoring listtic and low- 
angle normal faults (Figure 2). From the inferences derived 
from this simple mechanical model, cross cutting relation- 
ships between low-angle and high-angle faults observed in 
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Figure 5. Distributions of deviatoric stress and predicted fault patterns as a function of the 
normal-traction component in the g direction applied along the wedge rear and the wedge toe. 
Parameters used in the calculations are k4 '- -O.Spg, a•o -- 50 km, ;• = 0.4, ;•b = 0.9, a -- 0 ø, and 
/3 = 200 . (a) ks = 30 bars, and (b) ks =-10 bars. 
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Figure 6. Distributions of deviatoric stress and predicted fault patterns as a function of 
the vertical gradient of the normal traction component in the g direction. Parameters used in 
the calculations are ks = 10 bars, z0 -- 50 km, )• -- 0.4, )•b - 0.4, a = 0 ø, and/3 = 20 ø. (a) 
k4 =-1.3pg, and (b) k4 =-0.5pg. 
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Figure 7. Progressive initiation of normal faults towards the wedge toe in a sandbox experiment 
for sliding of extensional wedges [Xiao et al., 1991]. 

hanging walls of detachment faults might indicate whether 
master detachment faults have shallowed or steepened as 
they evolved, assuming all other mechanical conditions and 
parameters remained the same during the change in wedge 
geometry. 

In the Snake Range of eastern Nevada, low-angle nor- 
mal faults in the hanging wall of the northern Snake Range 
decollement are consistently cut by high-angle normal faults 
[Miller et al., 1983]. This type of cross cutting relation- 
ship has been explained by rotation of hanging wall high- 
angle faults to a low-angle orientation mechanically unfa- 
vorable for further movement, and thus new high-angle nor- 
mal faults develop and cut the older rotated normal faults. 
During this process, the orientations of the principal stresses 
are assumed to be horizontal and vertical, and initiation of 
faulting was governed by the Anderson fault theory [Prof- 
left, 1977; Miller et al., 1983]. This explanation does not, 
however, explain the extensional history in the Whipple 
Mountains detachment fault system, southeastern California 
where low-angle normal faults excised in the hanging wall 
truncate an older set of high-angle normal faults [Lister and 
Davis, 1989]. Results of the model presented in this paper 

may provide a solution to this problem. The Whipple de- 
tachment fault itself has not been rotated significantly since 
its initiation, because the fault cuts at a low angle (• 300) 
through the unconformity between the Precambrian base- 
ment and Tertiary volcanic and sedimentary strata in its 
hangingwall (G.A. Davis, personal communication, 1989) 
(also see Lister and Davis [1989]). Thus changes in wedge 
geometry cannot be the cause for the observed cross cut- 
ting relationship. Variation in other conditions such as pore 
fluid pressure in and along the bases of wedges is more likely 
to cause excisement/initiation of younger low-angle normal 
faults in the hanging wall of the Whipple detachment fault. 
For example, the Whipple detachment fault system may 
have had high pore fluid pressures in the fault zone and 
low pore fluid pressures in its hanging wall during the early 
stage of its evolution. This condition would have allowed the 
development of high-angle normal faults in the hanging wall 
as shown in Figure 4a. As normal faults in the hanging wall 
begin to develop, high pore-fluid pressures could be released 
from the detachment fault zone into the hanging wall. This 
process may produce a condition of low pore fluid pressures 
in the detachment.fault zone and high pore fluid pressures 
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Figure 8. Relationship between the critical length of unfaulted wedge toe and the dip angle of 
master detachment fault. Parameters used in the calculation are ks - O, k4 = -0.9pg, A = 0.4, 
A• - 0.4, and ce - 1 ø. So is the cohesive strength of the wedge. 

in the wedge-shaped hanging wall. As shown in Figure 4c, 
this condition would favor the development of both listtic 
and low-angle normal faults. 

Alternative to the above explanation for the excisement of 
low-angle normal faults in the Whipple Mountains, a change 
in the vertical gradient of the horizontal normal traction 
along the wedge rear, ]c4, may also have caused the change 
in mode of normal faulting in the hanging wall. It is possible 
that ]c4 was high, say 1c4 ---- -0.5pg, during the early stage of 
detachment faulting in the Whipple Mountains. This con- 
dition would favor the development of high-angle normal 
faults as shown in Figure 6a. However, if ]c4 decreased as 
the detachment system was evolving, the boundary condi- 
tion along the wedge rear could favor the development of 
more listtic and low-angle normal faults as shown in Figure 
6b. 

Limitations of the Model 

The model discussed above provides a conceptual guide 
that may lead to unravelling the complex relationship be- 
tween boundary condistions and stress distribution in ex- 
tensional wedges. The major shortcoming of the appproach 
is that once faults begin to develop in the wedge, new bound- 
aries are created and thus the boundary conditions change. 
In this case, the wedge is no longer a continuum. Addition- 
ally, the assumption that a throughgoing detachment fault 
must form before the initiation of its hangingwall normal 
faults is uncertain, because both can develop simultaneously. 
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