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INTRODUCTION
Although the Altyn Tagh fault system is thought

to have played an important role in accommo-
dating Indo-Siberian convergence (Avouac and
Tapponnier, 1993; Peltzer and Tapponnier, 1988;
Tapponnier et al., 1986; Burchfiel et al., 1989)
its tectonic evolution remains poorly known.
Locally, the Altyn Tagh fault coincides with the
northern edge of the Tibetan Plateau and sepa-
rates it from the Tarim basin to the north (Fig. 1).
Between 86° and 92°E, however, the 600-km-
long by 90-km-wide Altyn Mountains are north
of the fault. This range, after which the Altyn
Tagh fault is named, is bounded to the north by
the North Altyn fault system.

It was suggested that deformation along the
northern margin of the plateau is partitioned into
thrusting on the North Altyn fault system and left
slip on the Altyn Tagh fault to the south (Avouac
and Tapponnier, 1993; Burchfiel et al., 1989;

Molnar et al., 1987a; Peltzer and Saucier, 1996;
Wittlinger et al., 1998). To test this interpretation,
we investigated the westernmost 120 km of the
North Altyn fault, herein referred to as the
Jianglisai reach. In contrast to the expected north-
west-directed thrusting, we found that slip
occurred as east-northeast–directed left-reverse
motion. To explain these kinematics we suggest
that the North Altyn fault system is the northern
bounding fault of a rhomb-shaped transpres-
sional strike-slip duplex along the Altyn Tagh
fault system (Fig. 1).

JIANGLISAI REACH OF THE NORTH
ALTYN FAULT

The Jianglisai reach extends from the old
Qiemo coal mine in the west to Unusai in the
east, and comprises the Jianglisai, Luojianglisai,
and Unusai faults (Fig. 2). Along most of this
reach, the system strikes ~N60°E and dips
60°–70°S. South of the fault, hanging-wall rocks
are predominantly quartzofeldspathic gneiss,

schist, and marble, cut by nonfoliated granitic
dikes. Northwest of the system are folded Meso-
zoic and Cenozoic strata in addition to Protero-
zoic(?) schist, amphibolite, and limestone in-
truded by tonalite plutons. Steeply northwest
dipping Tertiary deposits between Tatulekisu and
Unusai are separated from Mesozoic strata to the
south by the vertical to steeply south dipping
Luojianglisai fault (Fig. 2). The Tertiary section
coarsens upward from upper Oligocene fluvial
and lacustrine redbeds (Rumelhart, 1998) to
Pliocene-Pleistocene(?) (Xinjiang Bureau of
Geology and Mineral Resources, 1993) alluvial-
fan facies boulder conglomerate.

West of Luojianglisai, the trace of the Jiangli-
sai fault coincides with the topographic front of
the Altyn Mountains. East of Unusai, however,
this front steps right ~35 km and becomes signif-
icantly less linear. We suspect that in this area the
main fault diverges from the range front and con-
tinues to the east either in the subsurface of the
Tarim basin along the Luojianglisai fault or
inside the Altyn Mountains along the Jianglisai
fault. Quaternary fault scarps with 80–90 m of
vertical separation have been observed along the
range front ~200 km east of Unusai (Molnar
et al., 1987a, 1987b; Wittlinger et al., 1998), and
these structures may be equivalent to faults
within the Jianglisai reach.

Kinematics 
Three aspects of the deformational style in the

area suggest strike-slip faulting. (1) The trace of
the Jianglisai fault is straight for more than 75 km
(Fig. 2). (2) Near the old Qiemo coal mine sub-
parallel fault strands separate ridges of crystalline
basement from intervening panels of Jurassic
strata (Fig. 2). The along-strike variability in the
dip direction and magnitude of these faults is
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ABSTRACT
Although the Altyn Tagh fault system has played an important role in the Indo-Asian col-

lision, its geometry and tectonic evolution remain poorly known. Between 86° and 92°E, this sys-
tem is at least 100 km wide and is bounded to the north and south by the North Altyn and Altyn
Tagh faults, respectively. Mapping along the Jianglisai reach of the North Altyn fault indicates
that Miocene(?) to Pliocene(?) motion was predominantly left to left-reverse slip, with transport
vectors trending N45°–60°E. Map relationships suggest that total offset on the fault is >120 km.
These results are inconsistent with previous models of the Altyn Tagh fault system in which
oblique convergence along the northern margin of the Tibetan Plateau is partitioned into thrust-
ing on the North Altyn fault and left slip on the Altyn Tagh fault. An alternative hypothesis is
that the North Altyn fault is the northern boundary of a transpressional strike-slip duplex
within which the structurally elevated Altyn Mountains were created. Our model suggests that
transpressional deformation may be restricted to this strike-slip duplex and need not charac-
terize the entire margin.
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Figure 1. A: Simplified map of northwest Tibet showing positions of North Altyn and Altyn Tagh faults relative to Altyn Mountains . First-order bend
in Altyn Tagh fault is south of Altyn Mountains.Topographic contours shown at 3000 ft intervals; numbers give elevations in thousands of feet.
Compiled from Anonymous (1989, 1990); Chinese State Bureau of Seismology (1992),Wang (1997), and our mapping.
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characteristic of strike-slip structures (Sylvester,
1988). (3) South of the Luojianglisai strand Upper
Cretaceous(?) and Jurassic strata are deformed
into a northeast-trending syncline (Fig. 2). The
oblique orientation of this fold axis with respect to
the bounding faults that truncate it is consistent
with its formation in a zone of sinistral shear. In
addition to the style of deformation that is sugges-
tive of strike-slip kinematics, left- to left-reverse
slip directions are indicated by kinematic data.

Riedel Composite Fabrics.The Jianglisai,
Luojianglisai, and Unusai faults typically occur as
≥2 m thick gouge and cataclasite zones in which
composite fabrics are locally well developed.
These fabrics consist of a penetrative scaly cleav-
age (P-foliation) that is inclined to the margins of
the shear zone (F-plane) and that is typically dis-
sected by millimeter- to centimeter-spaced Riedel
shears (R-planes). We follow Chester and Logan
(1987), Platt et al. (1988), and Cowan and
Brandon (1994) in our kinematic interpretation of
these fabrics (e.g., see block diagram in Fig. 2).
The stereograms in Figure 2 summarize com-
posite fabrics measured at six sites.1 Mean fault
planes are labeled F, and the arrows indicate the
motion of the hanging-wall block relative to the
footwall. Fault surfaces at sites 702-1, 704-4, and
705-3 are northeast striking and southeast dipping
with shallowly southwest-plunging slip vectors
that indicate sinistral motion. Site 701-1 is located
on a northwest-dipping section of the Unusai fault
that has a releasing geometry (Fig. 2), and slip at
this station was directed downdip. Sites 721-1 and
720-3 indicate left to left-reverse motion on north-
west-dipping fault surfaces.

Fault-Slip Directions. Slip vector azimuths
were also measured on striated surfaces within
the gouge and adjacent rocks. Fault-parallel sur-
faces both bound and occur within the gouge
zones and preserve two sets of striae (Fig. 3A): a
southwest-trending set that indicates left-reverse
motion, and a northeast-trending population with
a sinistral slip vector azimuth. Only at 831-1
(Fig. 2) do both sets occur on the same surface.
At this site the northeast-trending set is younger.
Also plotted in Figure 3A are density-contoured
quartz-rod stretching lineations measured in the
basement south of the fault system. Although
scattered, these data show a southwest-plunging
maximum that generally is on the fault surfaces
and is subparallel to the southwest-plunging
brittle striae. Fault-slip data from microfaults
measured outside of the fault zone are shown in
Figure 3 (B–D). Surfaces with left to left-oblique
slip azimuths are plotted in Figure 3B and are
subparallel to the main fault in Figure 3A. Micro-
faults with normal (Fig. 3C) and reverse (Fig. 3D)
slip directions both occur as two sets of surfaces,
one of which is approximately parallel to the
Jianglisai reach.

Although it is possible that the dip-slip micro-
faults record a phase of dip-slip displacement
along the Jianglisai reach, other compelling evi-
dence for such motion is lacking. An alternative
explanation is that the microfaults formed
within restraining and/or releasing bends or by
the “porpoising” of blocks during strike slip.
Because the dip-slip striae approximately coin-
cide with the line of intersection between the
two microfault sets, another hypothesis is that
the striae formed during simultaneous slip on
preexisting, intersecting planes (Marrett and
Allmendinger, 1990). Unfortunately, the age
relations needed to distinguish between these
hypotheses are not clear.

Timing of Slip
Although the timing of slip along the Jiangli-

sai reach is not well known, it is the subject of on-
going work. Magnetostratigraphic analyses by
Rumelhart (1998) indicate that the Tertiary
coarse-clastic transition at Jianglisai occurred
prior to ca. 26.5 Ma. If this transition was caused
by uplift due to left-reverse motion on the Jiangli-
sai and Unusai faults, then the system was active
by late Oligocene time.

Additional timing relationships are provided by
apatite fission-track analyses from opposite sides
of the Unusai fault in the Unusai valley (Fig. 2).
A Jurassic sample north of the fault has a mean
track length of 12.16 ± 1.84 µm and a pooled age
of 15.7 ± 1.2 Ma, whereas the basement to the
south has a mean track length of 12.2 ± 2.05 µm
and a pooled age of 17.2 ± 0.9 Ma (Rumelhart,
1998). Both the distribution of single-grain ages
and the low mean track lengths indicate that these
samples are partially annealed and thus probably
do not reflect middle Miocene cooling. Neverthe-
less, the similarity of these two analyses suggests
that rocks on opposite sides of the Unusai fault
have similar low-temperature cooling histories.
The simplest interpretation is that (1) slip on the
Unusai strand juxtaposed these rocks either
within or beneath the partial annealing zone, and
(2) the fault was subsequently exhumed as a
passive marker during left-oblique motion on the
Luojianglisai strand to the north.

Uniform bedding attitudes in Tertiary strata
north of the Luojianglisai indicate that these
strata were not deformed until after the alluvial-
fan facies boulder conglomerates were deposited.
Although the age of this unit is poorly known, it
is thought to be latest Neogene to early Quater-
nary (Xinjiang Bureau of Geology and Mineral
Resources, 1993). East of Jianglisai valley there
appears to be an ~35-km-wide restraining bend
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Figure 2. Simplified geologic map of Jianglisai reach based on 1:100 000-scale mapping. Equal-area, lower hemisphere stereograms
summarize fault-zone composite fabrics, and inset block diagram (after Cowan and Brandon, 1994) shows kinematic interpretation of
Riedel composite structures. Note that both map and stereograms have been rotated. Only mean poles (with α95 confidence cones)
and corresponding planes are shown (see text footnote 1). Filled circles, open squares, and asterisks correspond to mean P, F, and R
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plane and is shown dashed. Derived slip directions are shown as arrows and indicate motion of hanging-wall block relative to footwall.

1GSA Data Repository item 200030, Unsimpli-
fied plots of kinematic data, is available on request
from Documents Secretary, GSA, P.O. Box 9140,
Boulder, CO 80301-9140, editing@geosociety.org,
or at www.geosociety.org/pubs/drpint.htm.
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in the Jianglisai fault (Fig. 1). If the Pliocene-
Pleistocene age for the boulder conglomerates is
correct, then it is a maximum age for the time at
which these strata passed through this bend.

The straight, fault-bounded range front indi-
cates that slip on the Jianglisai fault occurred
recently. Both our field observations and exami-
nation of CORONA satellite imagery, however,
indicate that all faults in the studied area are
capped by Quaternary alluvial deposits that are
~40 m above the active drainage. Bedding north
of the Luojianglisai fault crops out as smooth
ridges that trend parallel to the fault and make
identification of a scarp along this structure diffi-
cult. Nevertheless, an older Quaternary unit that
is sparsely preserved ~140 ± 40 m above the
active drainages appears to be cut by the Luo-
jianglisai fault on the CORONA images.

Total Offset Estimates 
Rocks do not match across the Jianglisai fault

system for at least 120 km, suggesting that total
offset is at least this much. This observation may
not be conclusive, however, because the dip-slip
component of motion on the system may have
juxtaposed significantly different structural levels.
If the syncline within Upper Cretaceous(?) strata at
Tatulekisu (Fig. 2) initially formed within the
restraining bend east of Unusai and was then trans-
ported along the fault, then slip is at least 80 km.

Estimates of shortening perpendicular to the
North Altyn fault system are 1–8 mm/yr, based on
reconnaissance observations of fault scarps
(Molnar et al., 1987a) and velocity models of the
Indo-Asian collision zone (Avouac and Tappon-
nier, 1993; Peltzer and Saucier, 1996). On aver-
age, faults within the Jianglisai reach are oriented
~N60°E, 60°S with a 20°W raking slip vector that
is oriented S50°W, 20°. For slip along this vector
to have a fault-normal rate of 1–8 mm/yr, it must
also have a strike-slip component of 6–45 mm/yr.
If the slip rate and direction have remained
roughly constant since the late Miocene, then total
strike-slip offset would range from 60 to 450 km.
Although these numbers are obviously specula-

tive, they provide an order-of-magnitude estimate
of the total offset that is comparable to the >120
km offset derived from our field observations.

DISCUSSION
Tarim-Tibet relative motion is generally

thought to be oblique to the Altyn Tagh system
and partitioned into left slip on the Altyn Tagh
fault and thrusting on the North Altyn fault
(Avouac and Tapponnier, 1993; Burchfiel et al.,
1989; Molnar et al., 1987a; Peltzer and Saucier,
1996; Wittlinger et al., 1998). However, slip
directed N45°E to N60°E on the Jianglisai reach
of the North Altyn fault system is not consistent
with this model. In addition, this model does not
readily explain why the Altyn Mountains are the
only such structurally elevated region north of the
Altyn Tagh fault. An alternative interpretation is
that the North Altyn and Altyn Tagh faults form
the north and south boundaries of a strike-slip
duplex (Fig. 4) (Woodcock and Fischer, 1986) in
which the Altyn Mountains are a rhomb horst
(Aydin and Nur, 1982). Length-to-width ratios of

strike-slip stepovers have been shown to be scale
invariant, with a constant value between 2.4 and
4.3 (Aydin and Nur, 1982). The ratio of the Altyn
Mountains is 3.6, consistent with its interpretation
as a rhomb horst. Such an interpretation predicts
that shortening has occurred in the east-northeast
sector of the range along left-oblique slip faults
within the Lapeiquan and Soukuli belts, adjacent
to the Lapeiquan suture (Guo et al., 1999; Sobel
and Arnaud, 1999). The North Altyn fault system
has lower slip rates than the Altyn Tagh fault to the
south (Bendick et al., 1998) and the Jianglisai
reach is no longer aligned with the Altyn Tagh
fault to the west. These observations indicate that
slip on the Altyn Tagh fault has recently become
dominant and that the Altyn mountains have been
captured by the Tarim (Fig. 4B).

A recent tomographic profile across the Altyn
Mountains indicates that they are underlain by
thickened crust (Wittlinger et al., 1998). Although
these authors argued that their results indicate that
the Altyn Tagh fault system is a transpressional
plate boundary, our strike-slip duplex model sug-
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Figure 3. Equal-area, lower hemi-
sphere stereograms of additional
kinematic data. A: Jianglisai, Unusai,
and Luojianglisai fault measure-
ments. All striae indicate left-slip
directions, and two populations are
evident: southwest-trending set
centered on 213, 53, and northeast-
trending set centered on 055, 25.
Also shown are 1% area contours of
quartz-rod stretching lineations
where dots are contoured data.
Contour maximum is centered near
southwest-plunging set of brittle
striae. B–D: Microfaults adjacent to
Jianglisai fault. B: Surfaces with
left to left-oblique motion. Note that
these surfaces form single popula-
tion that parallels regional faults
plotted in A. Slip directions cluster
into southwest- and northeast-
trending sets. C: Planes with striae
raking 61°–90° and showing normal
slip directions. D: Same as C, but for reverse slip directions. Shear sense on microfaults was
determined using criteria discussed by Petit (1987).
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gests that thickening and transpressional defor-
mation could be restricted to the strike-slip duplex
and need not characterize the entire fault system.

CONCLUSIONS
1. Geologic mapping along the 120-km-long

Jianglisai reach of the North Altyn fault system
indicates that the range front is characterized by
several subparallel, steeply dipping fault strands
that juxtapose basement gneiss to the south
against predominantly Mesozoic and Cenozoic
strata to the north.

2. On average, this system strikes N60°E and
dips 65°S with a 20°W raking slip vector that is
oriented S50°W, 20°.

3. The timing of slip is poorly constrained, but
the fault may have been active from the middle
Miocene until the Pliocene-Pleistocene. Addi-
tional timing relationships are the subject of on-
going work.

4. The geology does not correlate across the
fault for the entire ~120 km length of the reach
we mapped, suggesting that total left slip is at
least this great.

5. We suggest that the North Altyn fault system
forms the northern boundary of a strike-slip du-
plex that coincides with the Altyn Mountains.
This model suggests that transpressional defor-
mation could be restricted to the duplex.
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Figure 4. Diagrams illustrating pos-
sible tectonic evolution of Altyn
Mountains as strike-slip duplex.
Areas consumed by convergence
shown in gray. A: Initial configura-
tion. North Altyn fault was along
strike from western Altyn Tagh fault,
forming northern margin of trans-
pressional stepover. B: Decrease in
slip rate on North Altyn system
resulted in capture of Altyn Moun-
tains by Tarim block. Partial transla-
tion of duplex out of bend resulted
in ~5° counterclockwise rotation of
westernmost edge of duplex. C:
Present configuration.
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