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ABSTRACT

The Himalayan orogen has experienced
intense Cenozoic deformation and widespread
metamorphism, making it difficult to track its
initial architecture and the subsequent defor-
mation path during the Cenozoic India-Asia
collision. To address this issue, we conducted
structural mapping and U-Pb zircon geo-
chronology across the Shillong Plateau, Mikir
Hills, and Brahmaputra River Valley of north-
eastern India, located 30-100 km south of the
eastern Himalaya. Our work reveals three
episodes of igneous activity at ca. 1600 Ma,
ca. 1100 Ma, and ca. 500 Ma, and three
ductile-deformation events at ca. 1100 Ma,
520-500 Ma, and during the Cretaceous.
The first two events were contractional, pos-
sibly induced by assembly of Rodinia and
Eastern Gondwana, while the last event
was extensional, possibly related to breakup
of Gondwana. Because of its proximity to
the Himalaya, the occurrence of 500 Ma
contractional deformation in northeastern
India implies that any attempt to determine
the magnitude of Cenozoic deformation
across the Himalayan orogen using Protero-
zoic strata as marker beds must first remove
the effect of early Paleozoic deformation.
The lithostratigraphy of the Shillong Plateau
established by this study and its correlation to
the Himalayan units imply that the Greater
Himalayan Crystalline Complex may be a tec-
tonic mixture of Indian crystalline basement,
its Proterozoic-Cambrian cover sequence,
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and an early Paleozoic arc. Although the
Shillong Plateau may be regarded as a rigid
block in the Cenozoic, our work demonstrates
that distributed active left-slip faulting domi-
nates its interior, consistent with earthquake
focal mechanisms and global positioning sys-
tem velocity fields across the region.

INTRODUCTION

Understanding the tectonic evolution of
an orogen requires detailed knowledge of its
original architecture, which serves as a strain
marker and initial condition for determining
the magnitude of deformation and tracking the
deformation path responsible for its formation.
The active Himalayan orogen has experienced
intense Cenozoic deformation, high-grade
metamorphism, and widespread syncollisional
anatexis (e.g., LeFort, 1996; Yin, 2006). These
processes have created many uncertainties in
reconstructing the original geologic framework
and thus the evolution of the Himalayan oro-
gen. For example, the three main Himalayan
tectono-stratigraphic units, the Greater Himala-
yan Crystalline Complex, the Lesser Himalayan
Sequence (LHS), and the Tethyan Himalayan
Sequence (THS), are all juxtaposed by orogen-
scale faults (Gansser, 1964; LeFort, 1996; Yin
and Harrison, 2000; DiPietro and Pogue, 2004),
making it exceedingly challenging to establish
their original stratigraphic relationships prior to
the Cenozoic India-Asia collision (DeCelles et
al., 2000; cf. Myrow et al., 2003; also see review
by Yin, 2006). A central point to this issue is the
tectonic origin of the Greater Himalayan Crys-
talline Complex, which makes up the core of

the Himalaya; it has been inferred to be derived
from the Indian crystalline basement (Heim and
Gansser, 1939; Gansser, 1964; LeFort, 1975),
an exotic terrane (DeCelles et al., 2000), or
Tibetan middle crust north of the Indus-Tsangpo
suture (Nelson et al., 1996; cf. Beaumont et al.,
2001, 2004, 2006). Each of these models makes
distinctive predictions about the protolith of
the Greater Himalayan Crystalline Complex
and implies different kinematic histories and
dynamic controls for Himalayan development.
An Indian-basement origin for the Greater Hima-
layan Crystalline Complex requires the orogen
to have formed by thick-skinned thrusting (e.g.,
Gansser, 1964; LeFort, 1975; Yin et al., 2006).
An exotic-terrane hypothesis predicts the Hima-
layan orogen to have been built by reactivation
of a major early Paleozoic suture (DeCelles et
al., 2000; Gehrels et al., 2003, 2006a, 2006b;
cf. Frank et al., 1995; Miller et al., 2000; Steck,
2003; Myrow et al., 2003). Finally, derivation
of the Greater Himalayan Crystalline Complex
from Tibetan middle crust north of the Indus-
Tsangpo suture argues for large-scale horizontal
middle-crustal flow during continental collision
(Nelson et al., 1996).

One way to address the origin of the Greater
Himalayan Crystalline Complex is to establish
the pre-Cenozoic structural and stratigraphic
frameworks of the Himalayan orogen and its
neighboring Tibetan Plateau and Indian craton
(Fig. 1). This paper represents the first of two
papers on this issue by focusing on the geology
of the Shillong Plateau, Mikir Hills, and Brahma-
putra River Valley in the northeastern Indian
craton (Fig. 1). The companion paper will
deal with the geology of the eastern Himalaya,
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respectively (Yin et al., 2009). We select north-
eastern India for this study because its base-
ment rocks are located as close as only ~30 km
from the Himalayan front (Fig. 2A) (Gansser,
1983; Das Gupta and Biswas, 2000), which
provides more confidence for geologic corre-
lations. Below, we describe the regional geol-
ogy of the Shillong Plateau and its surrounding
regions and report the results of our structural
mapping, U-Pb geochronologic analysis, and
regional tectonic reconstruction. Our work not
only provides new constraints on the original
geologic framework of the Himalayan orogen
but also has broader implications for the evolu-
tion of Eastern Gondwana during the terminal
Proterozoic.

REGIONAL GEOLOGY

The Shillong Plateau is a northward-tilting
topographic feature, and its highest peaks reach
~2 km along its southern rim. The plateau is
separated from the Indian Peninsular Highlands
by the north-trending Rajmahal-Garo Gap at
which the Brahmaputra and Ganges Rivers
meet (Fig. 1). The plateau is bounded in the
south by the north-dipping Dauki fault and its
related folds (Evans, 1964; Biswas and Grase-
mann, 2005), in the east by the northwest-strik-
ing, right-slip Kapili fault and the Naga Hills
thrust belt (Evans, 1964; Kayal et al., 20006), in
the north by the Oldham and Brahmaputra Val-
ley faults (Bilham and England, 2001; Gupta
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and Sen, 1988; Rajendran et al., 2004), and in
the west by the Jamuna fault (Gupta and Sen,
1988; Nakata, 1989) (Fig. 2A). Internally, the
Shillong Plateau exhibits a series of northeast-
trending and locally north-trending linear topo-
graphic features, which have been interpreted
as extensional fissures related to Cretaceous
Gondwana breakup (Gupta and Sen, 1988;
Kumar et al., 1996; Srivastava and Sinha,
2004a, 2004b; Srivastava et al., 2005). The late
Cenozoic uplift of the Shillong Plateau may
have exerted a strong influence on the spatially
varying exhumation history and stress distribu-
tion across the eastern Himalaya (Bilham and
England, 2001; Grujic et al., 2006).

At ~35 km, the crustal thickness of the
Shillong Plateau is slightly thinner than its
surrounding regions (Mitra et al., 2005). The
Moho north of the Shillong Plateau dips gently
northward and reaches a depth of ~44 km at the
Himalayan front (Kumar et al., 2004; Ramesh
etal., 2005; Mitra et al., 2005) (Fig. 2B). Strike-
slip focal mechanisms dominate the Shillong
Plateau; the seismicity occurs across all depths
of the crust and may even be in the uppermost
mantle (Kayal and De, 1991; Mitra et al., 2005;
Drukpa et al., 2006). Shear wave anisotropy in
northeastern India exhibits an east-west fastest
direction below the Himalaya, a north-south
fastest direction across the Indian-Burma
Range, and a northeast-southwest fastest direc-
tion across the Shillong Plateau (Singh et al.,
2006), all of which correlate well with surface

Figure 1. Outline of the Hima-
layan orogen between the
Indus-Tsangpo suture zone
and the northern edge of the
Indo-Gangetic plain and the
locations of the Shillong Pla-
teau (SP), Rajmahal-Garo Gap
(RGG), and Naga Hills (NH).
The Ganges River (G) and
Brahmaputra River (B) both
flow across the Rajmahal-Garo
Gap into the Bay of Bengal.

30°N

traces of Cenozoic faults (also see Kumar et
al., 1996).

The basement of the Shillong Plateau
consists of sillimanite-bearing paragneiss,
amphibolites, banded iron formations, granu-
lites, and orthogneiss (e.g., Ghosh et al., 2005).
The orthogneiss units yield Rb-Sr whole-rock
isochron ages of ca. 1700 Ma, ca. 1400 Ma,
ca. 1100 Ma, ca. 800 Ma, ca. 700 Ma, and
600—420 Ma (Crawford, 1969; van Breemen et
al., 1989; Ghosh et al., 1991, 1994, 2005). The
widely scattered Rb-Sr ages can be attributed
to several factors. First, the analytical errors are
quite large, ranging from 15 m.y. to 122 m.y.
(e.g., van Breemen et al., 1989; Ghosh et al.,
1991). Second, the Rb-Sr ages may represent
cooling rather than crystallization ages. Third,
the method cannot detect multiple thermal
events and thus may have produced error chron
ages with no geologic significance. Because
of these complexities, the crystallization ages
of plutons in the Shillong Plateau are poorly
constrained, and this has made the correla-
tion of Himalayan and Indian units difficult.
It also limits our ability to decipher the tec-
tonic events across Eastern Gondwana (e.g.,
Collins and Pisarevsky, 2005). The timing
of metamorphism in the Shillong crystalline
basement has been determined by the chemi-
cal ages of metamorphic monazites, with ages
clustered at 1600-1400 Ma, 1000-1300 Ma,
and ca. 500 Ma, respectively (Chatterjee et al.,
2007). These metamorphic age clusters are in
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strong contrast to the nearly continuous Rb-Sr
ages in the region. As shown here, our U-Pb
zircon geochronology supports the notion
that the Shillong region experienced episodic
rather than semicontinuous thermal events in
the same time periods broadly delineated by
Chatterjee et al. (2007).

The cover sequence of the Shillong Plateau
consists of the Proterozoic Shillong Group,
Permian Gondwana sequence, and Cretaceous
to Neogene sediments (Das Gupta and Biswas
2000) (Fig. 2A). The Shillong Group consists
of quartz arenite, sandstone, and phyllite, all
of which have experienced multiple phases of
folding and, locally, lower greenschist-facies
metamorphism (Ghosh et al., 1994; Mitra and
Mitra, 2001). Deposition of the Cretaceous
sediments (mostly sandstone and shale) was
associated with 150-105 Ma basaltic ultrama-
fic-alkaline-carbonatite extrusions (e.g., Lal et
al., 1978; Srivastava and Sinha, 2004a, 2004b;
Srivastava et al., 2005). The occurrence of the
Cretaceous mafic and ultramafic rocks has
been related to Gondwana breakup and coeval
formation of the Kerguelen oceanic plateau at
110-120 Ma (Coffin et al., 2002; Srivastava et
al., 2005).

Although continuous Cenozoic stratigraphic
sections exist in the Naga Hills in the east and
the Bengal Basin (also known as Sylhet Trough)
in the south, Oligocene strata are missing and
Miocene strata are much thinner over much of
the Shillong Plateau than those in the Bengal
Basin in the south (Evans, 1964; Das Gupta
and Biswas, 2000). This relationship may be
explained by progressive growth and uplift of
the Shillong Plateau since the early Miocene
(ca. 23 Ma), which is much earlier than the
inferred Pliocene initiation of the Shillong uplift
at ca. 5 Ma (Johnson and Alam, 1991). Apatite
(U-Th)/He and fission-track thermochronology
indicates protracted cooling between 114 Ma
and 8 Ma across the central plateau, where the
older ages are possibly related to Gondwana
breakup and the younger ages (14-8 Ma) are
related to Cenozoic uplift of the Shillong Pla-
teau (Clark, 2006; Biswas et al., 2006, 2007).

GEOLOGY OF THE CENTRAL
SHILLONG PLATEAU AND
NEIGHBORING REGIONS

We conducted mapping along the main road
from Guwabhati to Cheerapunjee across the cen-
tral Shillong Plateau (Fig. 2). We also examined
crystalline rocks in the Brahmaputra River Val-
ley and northern Mikir Hills, where we col-
lected critical samples to date the main ortho-
gneiss units and the age of ductile deformation.
We describe our main findings next.
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Lithology

A major lithologic unit encountered in our
traverse is an undifferentiated crystalline com-
plex (unit xIn in Fig. 3A) that is composed of
quartzo-feldspathic gneiss, garnet schist, ortho-
gneiss, and locally amphibolite. This unit is
intruded by large deformed granitoids having a
longest dimension >10 km (unit gr-1 in Fig. 3A).
The gr-1 unit itself is intruded by deformed and
undeformed granitoids and their associated
dikes and veins (unit gr-2 in Fig. 3A). Unit gr-1
is mostly biotite granitoid and locally contains
lenses of mafic xenoliths ~30-50 cm long and
10-20 cm wide. Unit gr-2 is mostly K-feldspar
granitoid. As shown by our U-Pb zircon dating,
gr-1 has an age of ca. 1100 Ma, while gr-2 has
an age of 520-480 Ma.

The Shillong Group along our traverse is
made up of phyllite, mudstone, sandstone, and
coarse-grained cross-bedded quartz arenite.
Due to isoclinal folding (Fig. 4D) and the lack
of continuous exposure, we could not establish
the general stratigraphy of the Shillong Group.
The contact between the crystalline basement
and the Shillong Group is not exposed, although
it can be determined within ~20 m in the field.
The crystalline basement next to the buried con-
tact is highly altered schist, whereas beds of the
Shillong Group next to the contact are phyllite
that is isoclinally folded with axial cleavage
completely transposing its original bedding.
The intensity of the deformation and cleavage
development decrease rapidly away from the
contact in the Shillong Group, and the original
sedimentary structures such as cross-bedding
are visible in sandstones ~1-2 km away from
the contact. The decrease in the intensity of
deformation is also evident from our mapping;
directly against the contact, there is a tight syn-
cline in the Shillong Group and the fold limbs
dip at 69° and 75°, respectively (Fig. 3A). The
dip of the beds decreases rapidly to become
~24° ~4-5 km away from the contact (Fig. 3A).
Finally, the bedding becomes steep again as it
approaches the left-slip Badapani-Tyrsad fault.
These observations suggest that the basement—
Shillong Group contact is most likely tectonic
(see detailed discussion later herein) (Fig. 3A).

Eocene strata overlie the Shillong Group and
include coal-bearing sandstone, mudstone, and
shale (Fig. 4B). They are either flat-lying or very
broadly folded (Fig. 3A). South of the Eocene
exposure, there are Cretaceous strata, consisting
of thickly bedded basalt, siltstone, mudstone,
and sandstone. The Cretaceous beds are nearly
flat-lying in the north (Fig. 4F) but become steep
(~65°) in the south as they approach the Dauki
fault zone (Fig. 3A). This relationship suggests

that the Cretaceous strata were probably nearly
horizontal prior to Cenozoic deformation, and
their steep dips in the south were induced by
Cenozoic deformation.

Ductile Structures

Ductile deformation in the central Shillong
Plateau is expressed by the formation of gneissic
foliation in the crystalline basement, axial cleav-
age in both the crystalline basement and the
Shillong Group strata, tight to isoclinal folds
in the Shillong Group, and ductile shear zones
in the crystalline basement. Although the strike
of the gneissic foliation in the Shillong Plateau
and its neighboring regions is dominantly north-
east, the dip directions vary across a series of
antiforms and synforms in the basement, with
a wavelength of 5-8 km (Fig. 3A). Axial cleav-
age is commonly associated with the basement
folds, which trend northeast parallel to the
northeast-trending folds in the Shillong Group
and the contact between the basement and the
Shillong Group. The parallel relationship among
the regional gneissic foliation, folds, and major
lithologic contacts implies that these structures
were formed penecontemporaneously under the
same compressional event.

Our mapping revealed a major ductile shear
zone in the northern Shillong Plateau. It places a
garnet-bearing metapelite unit (mpl in Fig. 3A)
over a metamorphic unit composed of quartzo-
feldspathic gneiss (unit gn in Fig. 3A).The shear
zone is at least 20 m thick, striking N15°E and
dipping 55°SE. Stretching mineral lineation in
the shear zone trends N65°E and plunges 40°.
Asymmetric porphyroblasts indicate an oblique-
normal sense of shear with the east side of the
shear zone down. Fold hinges in the shear zone
are parallel to the stretching lineation, which
may have resulted from large simple-shear
deformation causing the fold axes to rotate ~90°.
The metapelite unit is intruded by leucogranitic
dikes of unknown age that are isoclinally folded.
Despite folding of gneissic foliations in its hang-
ing wall and footwall, the ductile shear zone
itself is not folded, suggesting that its develop-
ment postdates regional contraction. This obser-
vation has important implications for constrain-
ing its possible age of motion. We refer to the
ductile shear zone as the North Shillong Detach-
ment (Fig. 3). We note at several places that this
shear zone is cut by brittle faults striking N20°E.
Although we could not determine the kinematics
of the brittle faults in the field, their parallelism
to the nearby active left-slip faults suggests that
they might be Cenozoic in age (Fig. 3A).

Major Brittle Faults
Major faults encountered by our mapping
include (1) the northeast-striking Badapani-
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Tyrsad fault system, (2) the northeast-striking
Central Shillong thrust (see following discus-
sion), and (3) the Dauki thrust zone. We observed
the Badapani-Tyrsad fault system at two loca-
tions. The first is at the northern end of the fault
zone in the northeastern corner of our study area
(Fig. 3A), where the fault enters the Brahmapu-
tra River Valley (location 1 in Fig. 3A). A minor
fault in the fault zone that cuts an orthogneiss
unit strikes N60°E and dips 80°SE. Striations on
this fault trend N60°E and plunge 25° (Fig. 3A).
This fault consistently offsets veins and gneissic
foliations in a left-lateral shear sense. The sec-
ond place we examined the Badapani-Tyrsad
fault zone is near the town of Mawiyngkhung,
~10 km north of the city of Shillong (location 2
in Fig. 3A and Fig. 5A). There, the shear zone
is composed of steeply dipping phyllite of the
Shillong Group. The shear zone strikes N45°E
and dips 86°SE (Figs. 5A and 5B). It also exhib-
its subhorizontal stretching lineation. The angu-
lar relationship between the shear zone and the
cleavage within the shear zone indicates a left-
slip sense of shear.

The Badapani-Tyrsad fault system has a
prominent topographic expression, and its trace
follows a series of north-northeast—trending lin-
ear valleys and ridges in the interior Shillong
Plateau (Fig. 5). For this reason, we suspect that
the fault is active. We tested this speculation by
examining satellite images downloaded from
Google Earth; the images in the study areas
have a spatial resolution of ~2-3 m or better.
Near Mawiyngkhung, the fault trace lies along
the east side of a deeply incised valley in which
a large reservoir stands (Figs. SA and 5B). To
the north along the fault trace, as shown in
Figures 5C and 5D, the Badapani-Tyrsad fault
offsets a series of fluvial risers in a left-lateral
sense, with the largest offset on the order of
~170 m. Although cultivation could have modi-
fied the original river channel geometry, we
believe this effect to be minimal. Farms in the
area are plowed manually or by farm animals,
and the lack of modern machinery makes large-
scale modification of landscape unlikely. We did
not check this site in the field and the lack of
age constraints on the offset risers prevents us
from estimating the fault slip rate. However, by
examining the global positioning system (GPS)
velocity data of Jade et al. (2007) in the Shillong
plateau region, we obtain ~5 mm/yr left-slip rate
across the shear zone.

In addition to offset fluvial risers, we also
notice the development of hairpin drainage
geometry, the hallmark of active strike-slip
faulting (Lacassin et al., 1998), across the Bada-
pani-Tyrsad fault zone (Fig. S5E). Our interpre-
tation that the Badapani-Tyrsad fault zone is a
left-slip structure is also consistent with the
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left-lateral deflection of the Brahmaputra River
directly north of the Mikir Hills (Fig. 2A). We
believe that the Badapani-Tyrsad fault is only
one of several northeast-striking left-slip faults
across the Shillong Plateau. Another major left-
slip fault zone appears to pass through the town
of Guwahati, offsetting the northern margin of
the Shillong Plateau and deflecting the Brahma-
putra River channel left-laterally (i.e., the
inferred Guwahati fault in Fig. 2A).

The northward extent of the Badapani-Tyrsad
fault system is not clear, but we note that its pro-
jection follows approximately the rather linear
northwestern edge of the Mikir Hills (Fig. 2A).
Our interpreted left-slip kinematics also explain
the apparent ~20 km of left-lateral offset of the
northern edge of the Shillong Plateau (Fig. 2A).
We examined the southern extension of the
Badapani-Tyrsad fault via analysis of LAND-
SAT images. The fault appears to terminate into
a series of east-trending folds in the Cretaceous
strata on the west side of the fault, with dimin-
ishing prominence in topographic expression as
it approaches the Dauki thrust.

Although the contact between the base-
ment and the Shillong Group is not exposed,
we infer it to be a northwest-dipping thrust,
placing the basement rocks over the Shillong
Group strata. We made this interpretation for
two reasons. First, our field observation dem-
onstrates a rapid decrease in the magnitude of
contractional deformation as expressed by a
diminishing intensity of cleavage development
and the tightness of folds in the Shillong Group
away from the contact. Second, our U-Pb detri-
tal zircon geochronologic work, as presented
later in this study, raises the possibility that the
strata of the Shillong Group directly against the
basement contact are not the oldest part of the
sequence; this implies that the basement contact
is tectonic. The thrust interpretation is consistent
with the observation that the contact is parallel
to regional folds and foliation of contractional
origin, as indicated by our mapping (Fig. 3A).
We name this fault the Central Shillong thrust
(CST, Figs. 2A and 3A).

Evans (1964) originally inferred the Dauki
fault to be a major right-slip fault with >200 km
of motion. However, the segment of the Dauki
fault zone we examined ~12-14 km south of
the Cheerapunjee is a thrust contact. In the
field, the active fault trace can be clearly iden-
tified by its morphologic expression, which
displays two levels of incised terrace surfaces
in the hanging wall against a flat floodplain in
the footwall. The fault zone along a road cut
displays several minor imbricate thrusts in the
Cretaceous strata, which strike N75-80°E and
dip 25-30°N. All of the faults display downdip
striations and thrust offsets.

Mikir Hills

We examined the northernmost Mikir Hills
against the Brahmaputra River, where we iden-
tified three phases of plutonism. The first two
phases are medium-grained biotite granite and
coarse-grained K-feldspar augen gneiss, both
containing gneissic foliation. The last phase is
an undeformed K-feldspar-rich granitic dike
that cuts the older deformed plutons (Fig. 4A).
This relationship suggests that the last phase of
pluton emplacement postdates regional devel-
opment of the gneissic foliation.

Brahmaputra River Valley

Small outcrops of crystalline rocks up to
1-2 km in the longest dimension occur through-
out the Brahmaputra River Valley. We examined
several localities in the valley and found that the
main lithologic units are foliated biotite granite,
K-feldspar granite, and augen gneiss. The domi-
nant strike of the foliation in the basement rocks
is N15-30°E, which is parallel to the dominant
foliation trend in the Shillong Plateau and Mikir
Hills. This relationship suggests a regional tec-
tonic event that has transformed the original
structural trends into a uniform northeast direc-
tion. As discussed in our U-Pb zircon dating
section, this event was most likely associated
with the 520-500 Ma collision between India
and Antarctica, which produced the northeast-
trending foliation, magmatism, and widespread
metamorphic zircon growth. The widespread
occurrence of the crystalline basement rocks
across the Brahmaputra River Valley is unique
in the Himalayan foreland basin and suggests
that the foreland sediments are much thinner
there than elsewhere in northern India (Gansser,
1983). It also suggests that the Brahmaputra
River Valley may be mainly a piggyback basin
of the Shillong uplift (Fig. 2B).

U-Pb ZIRCON GEOCHRONOLOGY OF
CRYSTALLINE ROCKS

Methods

We conducted U-Pb spot dating on zircons
from granitoid and orthogneiss samples from
the Shillong Plateau, Mikir Hills, and the Brah-
maputra River Valley using the Cameca 1270
ion microprobe at the University of Califor-
nia—Los Angeles (UCLA). The analytical pro-
cedure follows that of Quidelleur et al. (1997),
and the analyses were conducted using an 8-15
nA O~ primary beam and an ~25-um-diameter
spot size. U-Pb ratios were determined using a
calibration curve based on UO/U versus Pb/U
from zircon standard AS3 (age 1099.1 Ma;
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Gently S-dipping
Cretaceous strata

Figure 4. Field pictures. (A) Undeformed 1084 Ma granitic dike (represented by sample AY(01-03-05C) that
intrudes into foliated orthogneiss in Mikir Hills (at location AY01-03-05 in Fig. 2A). (B) Eocene broadly folded
coal-bearing sandstone, claystone, and siltstone exposed in the south-central Shillong Plateau. (C) Undeformed
granite that intrudes the Proterozoic Shillong Group. (D) Thickly bedded quartz arenite of the Shillong Group
that is intruded by undeformed early Paleozoic granitoid. (E) Flat-lying to gently south-dipping Cretaceous
strata in the southern Shillong Plateau. (F) Isoclinal folds in the Shillong Group just outside the town of
Shillong.
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Paces and Miller, 1993). We collected our
data during four analytical sessions, each of
which has a different calibration curve over
distinct ranges in UO/U values (see notes in
Table 1 in GSA Data Repository for the range
of UO/U values'). We also adjusted isotopic
ratios for common Pb corrections following
Stacey and Kramers (1975). We calculated
concentrations of U by comparison with zircon
standard 91500, which has a U concentration
of 81.2 ppm (Wiedenbeck et al., 2004). Data
reduction was accomplished via the in-house
program ZIPS 3.0.3 written by Chris Coath.

Results

Mikir Hills

We collected three samples from the same
location along the northern rim of the Mikir Hills
(Fig. 2). The samples represent three phases of
plutonic emplacement. Sample AY 01-03-05-
(1)A is from a foliated biotite granite, sample
AY 01-03-05-(1)B is from a foliated K-feldspar
granite that crosscuts the biotite granite, and
sample AY 01-03-05-(1)C is from a K-feldspar
granitic dike that is undeformed and intrudes the
older deformed biotite and K-feldspar granites.
We obtained eight spot ages on eight different
zircon grains from sample AY 01-03-05-(1)
A, which yielded *"Pb/**Pb ages ranging from
1039 Ma to 1129 Ma, with a weighted mean age
of 1110 £ 15 Ma (26). We interpret the latter
as the crystallization age of the oldest phase of
granitoid at this location (Fig. 6).

We acquired 19 spot analyses on 16 zircon
grains from sample AY 01-03-05-(1)B, which
yielded three age ranges. One concordant
group from six spot analyses has a >’Pb/**Pb
weighted mean age of 1111 + 42 Ma (20).
Another concordant group from three spot
analyses has a 2”Pb/**Pb weighted mean age of
489 + 34 Ma (20) with low Th/U ratios (Fig. 6)
(Table 1 in GSA Data Repository, see footnote
1). Finally, ten spot analyses plot ages between
the first two age groups. We cannot explain
the high common Pb as an analytical prob-
lem because zircons from samples with low
common Pb were prepared on the same probe
mount and analyzed during the same session
for the sample with high common Pb. It is pos-
sible that our analyzed zircons contain inclu-
sions with high common Pb and some of our
spots sampled these inclusions. The older age
of 1111 + 42 Ma (20) for sample AY 01-03—

!GSA Data Repository item 2009049, Table 1, an-
alytical data for U-Pb ion-microprobe zircon dating;
Table 2, analytical data for U-Pb detrital zircon dat-
ing, is available at http://www.geosociety.org/pubs/
t2009.htm or by request to editing @ geosociety.org.
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05-(1)B is very similar to the weighted mean
age for sample AY 01-03-05-(1)A, suggesting
that the emplacement of the K-feldspar gran-
ite occurred immediately after the intrusion of
the biotite granite. The low Th/U ratios of the
younger age analyses from AY 01-03-05-(1)B
(ca. 489 Ma) indicate later zircon growth dur-
ing a metamorphic event.

Ten spot analyses on eight zircons from
sample AY 01-03-05-(1)C yielded a *’Pb/**Pb
weighted mean age of 1084 + 19 Ma (20).
Although this age is slightly younger than the
average crystallization ages of the two deformed
plutons described previously, the difference is
within the 26 confidence limit, and we do not
consider it significant. Because of this, we can
only broadly bracket the ductile deformation as
expressed by gneissic foliation to have occurred
ca. 1100 Ma.

We note that two analyses of sample AY
01-03-05-(1)C show significant discordance,
plotting along a discordia line that may extend
to the Phanerozoic (Fig. 6). Considering the
results from sample AY 01-03-05-(1)B, this
may represent the same metamorphic event at
ca. 490 Ma.

Brahmaputra River Valley

Sample AY 02-07-06-(2) was collected
from K-feldspar augen gneiss in an isolated
basement outcrop north of the Mikir Hills and
directly against the Brahmaputra River (Fig. 2).
We did 14 spot analyses on 14 different zircon
grains. Six reversely discordant analyses fea-
ture UO/U values beyond the range of calibra-
tion, as do four other analyses, such that only
four remaining analyses are within the cali-
bration range. The latter four analyses range
in 27Pb/2%Pb age from 1520 Ma to 1630 Ma
(Fig. 7A). Most analyses yielded *"Pb/*Pb
ages that span from 1400 to 1628 Ma. A single,
dramatically reversely discordant analysis with
alow Th/U ratio yields latest Proterozoic—early
Paleozoic ages (the »*U/**Pb age is >400 m.y.
older than the *"Pb/?*Pb age). Using the four
concordia analyses that have U concentration
within the range of calibration, we interpret
the augen gneiss to have crystallized broadly
between 1520 Ma and 1630 Ma. The augen
gneiss unit was affected by a later metamor-
phic event after the latest Proterozoic, which
may correlate with the ca. 490 Ma event as
detected in the northern Mikir Hills.

Shillong Plateau

In total, five samples from both deformed
and undeformed plutonic rocks were analyzed
across the Shillong Plateau. Sample AY 02-04—
06-(3) was collected from a foliated biotite gran-
ite in the northernmost Shillong Plateau east of

Guwabhati (unit gr-1a in Fig. 3A). We performed
16 spot analyses on 13 zircon grains for the sam-
ple and obtained ages from 500 Ma to 1600 Ma
(Fig. 7B). Three concordant analyses cluster at
ca. 500 Ma, and all have low Th/U ratios (0.032
and 0.137), suggesting a metamorphic origin
(Table 1 in GSA Data Repository, see footnote
1) (Fig. 7C). Another concordant age cluster is
at ca. 1100 Ma, and these are dominated by high
Th/U ratios (mostly 1.1-1.4) (Table 1 in GSA
Data Repository, see footnote 1), suggesting an
igneous origin. Finally, two grains yielded con-
cordant ages of 1521 + 28 and 1598 + 26 Ma
and relatively high Th/U ratios of 0.573 and
0.183, indicating that they were derived from
igneous rocks. There are three possible interpre-
tations for the obtained ages. First, the granite
crystallized at ca. 500 Ma and inherited various
older igneous zircons of 1100-1600 Ma. Sec-
ond, the granite crystallized at 1100 Ma with
1600 Ma inherited zircons. Third, the granite
crystallized at 1600 Ma and experienced later
zircon-growth events at 1100 Ma and 500 Ma,
respectively. Because ca. 500 Ma concordant
analyses are associated with low Th/U values,
reflecting Pb loss and new zircon growth, and
only two grains have ages of 1520-1600 Ma,
we favor the second interpretation—that the
dominant concordant ages clustered at 1100 Ma
represent the crystallization age of the pluton.
This interpretation implies that the 1100 Ma
orthogneiss intruded into an older basement
that contains 1600 Ma igneous zircons and the
1100 Ma orthogneiss and the older basement
together experienced a later metamorphic event
at ca. 500 Ma. It is possible that the 1600 Ma
zircons were from a basement pluton emplaced
during the same period as the one we dated in
the Brahmaputra River Valley. This interpreta-
tion implies a regionally extensive magmatic
event at 1600 Ma in northeastern India.

Sample AY 02-04-06-(9) was collected from
an augen gneiss (gr-2a in Fig. 3A) that intrudes
into the Shillong crystalline basement rocks and
an older deformed granite (units xIn and gr-1
in Fig. 3A). We conducted seven spot analy-
ses on different zircon grains from the sample,
which yielded a clustered age population around
520 Ma on the concordia plot (Fig. 7D). The zir-
cons have high to moderate Th/U ratios (Table 1
in GSA Data Repository, see footnote 1), indi-
cating an igneous origin. Some ages are slightly
reversely discordant, so if these ages repre-
sent a single crystallization event, it must have
occurred between the weighted mean 2**U/**Pb
age of 530 = 7 Ma (26) and the mean 2"Pb/**Pb
age of 490 + 9 Ma (26). This age estimate sug-
gests that the gneissic foliation in the deformed
granitoid was developed after 530 Ma. Despite
the uncertainty, our U-Pb zircon age of this
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AY 01-03-05-(1)C. (D-E) Blown-up concordia diagrams for sample AY 01-03-05-(1)B.
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Figure 7. U-(Th)-Pb zircon concordia diagrams for samples collected from the Brahmaputra River Valley and Shillong Pla-
teau. (A) Concordia diagram for sample AY 02-07-06-(2). (B) Concordia diagram for sample AY 02-04-06-(3). (C) Enlarged
lower segment of concordia diagram for sample AY 02-04-06-(3). (D) Concordia diagram for sample AY 02-04-06-(9).
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lower concordia diagram for sample AY 02-05-06-(5). (H) Concordia diagram for sample AY 02-05-06-(6)B.
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deformed pluton is significantly different from
the Rb-Sr whole-rock isochron ages of 464 Ma
and 550 Ma from the same deformed pluton (see
summary by Ghosh et al., 2005) (Fig. 2A). This
difference requires caution when using Rb-Sr
ages to interpret the crystallization age of the
plutons in the region.

In order to constrain the age of regionally
extensive ductile deformation across the cen-
tral Shillong Plateau and the age of the Shillong
Group, we dated three samples (AY 02-05-06-
[4], AY 02-05-06-[5], and AY 02-05-06-[6]B)
from the same undeformed plutonic complex
that intrudes the Shillong Group strata (unit gr-2d
in Fig. 3A). Sample AY 02-05-06-(4) was col-
lected from the northern margin of the granitoid,
where it intrudes into the phyllite and quartzite
of the Shillong Group (Fig. 4C). We performed
single spot analyses on each of 10 zircon grains
from the sample. Five of the analyses showed
reverse discordance, four of them exhibited dis-
cordance, and one was concordant with an age of
ca. 1000 Ma (Fig. 7E). All but one of the analyses
have UO/U values below the range of the calibra-
tion. The discordant analyses define a lower inter-
cept age of ca. 500 Ma. There are two possible
interpretations for the obtained ages. The first is
that the 1000 Ma concordant age may represent
the time of crystallization for the pluton, which
experienced a later thermal event at ca. 500 Ma.
The second interpretation is that the pluton crys-
tallized at ca. 500 Ma, incorporating inherited
1000 Ma zircons from the wall rocks, and the
same 500 Ma emplacement event also caused
Pb loss of the older zircons, resulting in their dis-
cordant ages. The two interpretations imply very
different ages for the Shillong Group. That is, it
is either older than ca. 1000 Ma, or older than
ca. 500 Ma. The first interpretation would require
parts of the Shillong Group to have been depos-
ited in or prior to the middle Proterozoic.

Although we could not differentiate the two
possibilities for sample AY 02-05-06-(4), we
were able to obtain a crystallization age for sam-
ple AY 02-05-06-(5) from the central part of the
same plutonic complex (Figs. 3A and 4C). For
this sample, we obtained 11 analyses on seven
zircon grains that display a relatively simple age
pattern despite significant reverse and normal
discordance (Figs. 7F and 7G). Analysis of one
grain yielded an age of ca. 1100 Ma, and the
rest have a weighted mean *’Pb/**Pb age of 497
+ 9 Ma (20). The discordance may be due to
all but three of the analyses being beyond the
calibration range. We interpret these results as
indicating the pluton crystallized at ca. 500 Ma,
with an inherited grain of ca. 1100 Ma.

Sample AY 02-05-06-(6)B was collected
along the southern margin of the deformed plu-
ton (unit gr-2d in Fig. 3A). This portion of the
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granite intrudes into a thickly bedded quartz
arenite sequence of the Shillong Group. We con-
ducted 16 spot analyses from 13 zircon grains,
with two spots on three of our analyzed zircons.
On a concordia plot, the data appear to show
a cluster of mostly concordant ages between
430 Ma and 480 Ma, with a potential dis-
cordia line extending down toward 100—-120 Ma
(Fig. 7H). These younger ages correspond well
to the age range of Cretaceous igneous activi-
ties at 105-115 Ma in the southern Shillong
Plateau (e.g., Lal et al., 1978; Srivastava and
Sinha, 2004a, 2004b; Srivastava et al., 2005).
We interpret the early Paleozoic age cluster at
430-480 Ma to represent the crystallization age
of the undeformed pluton, followed by a Pb-loss
event in the Cretaceous. The crystallization age
inferred from sample AY 02-05-06-(6)B is
slightly younger than that constrained by sam-
ples AY 02-05-06-(4) and AY 02-05-06-(5) at
ca. 500 Ma, indicating a possible diachronous
emplacement of this large plutonic complex.

We note that the plutonic complex we dated
using samples AY 02-05-06-(4), AY 02-05-
06-(5), and AY 02-05-06-(6)B (unit gr-2d
in Fig. 3A) previously yielded a Rb-Sr age
of ca. 600 Ma as summarized in Ghosh et al.
(2005). This age is significantly different from
our result and again suggests caution when
using the Rb-Sr ages to interpret crystallization
age of the plutons in the region.

In summary, our U-Pb zircon dating of five
samples indicates that the Shillong Plateau
exposes plutonic rocks emplaced at ca. 1100 Ma
and 520430 Ma, respectively. The pre—1100 Ma
basement contains 1600 Ma igneous zircons,
which may correlate with the 1600 Ma ortho-
gneiss in the Brahmaputra River Valley. The
crosscutting relationships bracket portions of
the Shillong Group to predate 430-500 Ma. The
U-Pb zircon dating also constrains the regional
gneissic foliation and isoclinal folds in the
Shillong Group to have occurred between 520 Ma
(youngest deformed granite) and 500 Ma (oldest
undeformed granite). Although these constraints
on the age of the Shillong Group are broadly
consistent with the Proterozoic age assign-
ment (Das Gupta and Biswas, 2000), the initial
age of deposition for the sequence is unknown.
We address this issue next by presenting U-Pb
detrital zircon ages of the Shillong Group.

U-Pb DETRITAL ZIRCON
GEOCHRONOLOGY OF CRYSTALLINE
ROCKS

Method

We conducted U-Pb dating of detrital zircons
from two samples of the Shillong Group, sam-

ples AY 02-04-06-(12) and AY 02-04-06-(18)
(see Fig. 3A for locations). Zircon grains from
each sample were set in an epoxy and mounted
adjacent to several reference standard zircon
crystals. We performed U-Pb geochronology
on zircons using laser-ablation—multicollector—
inductively coupled plasma—mass spectrometry
(LA-MC-ICP-MS) at the LaserChron Center of
the University of Arizona. The analyses involved
ablation of zircon with a New Wave DUV193
Excimer laser operating at a wavelength of 193
nm and using a spot diameter of 15-35 um.
The ablated material is carried in helium into
the plasma source of a GVI Isoprobe, which is
equipped with a flight tube of sufficient width
that U, Th, and Pb isotopes are measured simul-
taneously. We made all measurements in a static
mode using Faraday detectors for **U, **Th,
208206Ph and an ion-counting channel for 2*Pb.
Ion yields were ~1.0 mv per ppm. Each analy-
sis consisted of one 20 s integration on peaks
with the laser off (for backgrounds), twenty 1 s
integrations with the laser firing, and a 30 s delay
to purge the previous sample and prepare for
the next analysis. The ablation pit was ~15 pm
in depth.

For each analysis, the measurement uncer-
tainty in determining **Pb/***U and **Pb/***Pb
was ~1%—2% (206) in the 2*Pb/?%U age. The
measurement uncertainties of **Pb/*”’Pb and
20Ph/2"Pb were also ~1%-2% (26) for ages
older than 1.0 Ga, but uncertainty was sub-
stantially larger for younger grains due to low
intensity of the *’Pb signal. For most analy-
ses, the crossover in precision of 2%Pb/?**U and
205Pp/27Ph ages occurred at 0.8—1.0 Ga.

We corrected common Pb by using the mea-
sured **Pb and assuming an initial Pb compo-
sition from Stacey and Kramers (1975) (with
uncertainties of 1.0 for *Pb/?*Pb and 0.3 for
207Pb/2%4Pb). Our measurement of *Pb was
unaffected by the presence of ***Hg because
backgrounds were measured on peaks (thereby
subtracting any background **Hg and **Pb),
and because very little Hg was present in the
argon gas.

Interelement fractionation of Pb/U is gener-
ally ~20%, whereas fractionation of Pb isotopes
is generally ~2%. In-run analysis of fragments
of a large zircon crystal (generally every fifth
measurement) with known age of 564 + 4 Ma
(20) was used to correct for this fractionation.
The uncertainty resulting from the calibration
correction was generally 1%—2% (26) for both
206Pb/27Ph and 2*Pb/**U ages. Interpreted ages
are based on 2°Pb/?*U for grains younger than
800 Ma grains and on 2*Pb/*"Pb for grains
older than 800 Ma. Analyses that were >30%
discordant (by comparison of 2%Pb/*®U and
206ph/27Ph ages) or >5% reverse discordant
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were not considered further. All analytical data
are listed in Table 2 in GSA Data Repository
(see footnote 1).

Results

Sample AY 02-04-06-(12) was collected
from a quartz arenite unit directly east of the
contact between the Shillong Group and crys-
talline basement (Fig. 3A). This sample yielded
two dominant age populations, one between
900 Ma and 1150 Ma and another between
1450 Ma and 1850 Ma (Figs. 8 and 9). These
age clusters correspond well to the crystalliza-
tion ages of orthogneiss units in the Shillong
Plateau, Mikir Hills, and Brahmaputra River
Valley described earlier, suggesting that they
are probably derived from a local source. There
are also two minor age groups at 560 Ma and
2500 Ma. Deciphering whether the young zir-
con grains with 560 Ma ages are metamorphic or
igneous is critical in interpreting the age of the
Shillong Group and the tectonic setting for its
deposition. Because the young grains have low
U/Th ratios of 1.0 and 1.5 (Table 2 in GSA Data
Repository, see footnote 1), respectively, we
interpret them to have an igneous origin. Thus,
the deposition age of this portion of the Shillong
Group must be younger than ca. 560 Ma.

Sample AY 02-04-06-(18) was collected
from a sandstone unit near the town of Shillong.
Because Shillong Group strata are isoclinally
folded, the stratigraphic relationship between
this sample and the first sample discussed above
is not clear. We analyzed 97 zircon grains
from this sample that yielded Pb-Pb ages from
1100 Ma to 3300 Ma (Fig. 8). The ages mainly
fall into two groups between 1100 Ma and
1250 Ma and between 1500 Ma and 1750 Ma.
The age distribution of this sample is similar to
that for sample AY 02-04-06-(12) in that they
both have the 1600-1700 Ma age peaks. How-
ever, the sample differs from the first sample by
its lack of 560 Ma zircons and the slightly older
1200 Ma peak compared to the age cluster at
900-1100 Ma age (Figs. 8 and 9).

In summary, the detrital zircon ages indicate
that the Shillong Group received sediments from
1200 to 1100 Ma plutonic rocks and an earlier
basement that contains ca. 1600 Ma zircons.
Deposition of sample AY 02-04-06-(12) post-
dated ca. 560 Ma, while deposition of sample
AY 02-04-06-(18) postdates 1100 Ma.

DISCUSSION
Our mapping documents the presence of a
north-northeast—trending ductile normal shear

zone with a top-to-the-southeast sense of shear
in the northern Shillong Plateau. Our work also
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documents active left-slip faulting on the previ-
ously recognized northeast-striking Badapani-
Tyrsad fault zone. Combined field observations
and U-Pb zircon geochronology of deformed
and undeformed granitoids indicate occur-
rence of ductile deformation, magmatism, and
metamorphic zircon growth at ca. 1100 Ma and
ca. 530-480 Ma, respectively. In the following
discussion, we present the broader implications
of these findings.

Proterozoic to Cambrian-Ordovician
Magmatism

Our U-Pb zircon dating reveals three episodes
of granitoid magmatism in northeastern India at
ca. 1600 Ma, ca. 1100 Ma, and ca. 500 Ma. The
discrete nature of the magmatic events is also
indicated by the similar age clusters of detrital
zircon from the Shillong Group at 900-1150 Ma
and 1500-1750 Ma (Fig. 8).

Previous geochronologic work based on the
Rb-Sr whole-rock isochron method had revealed
awide range of ages from ca. 1700 Ma to 420 Ma
for orthogneiss and plutons in the Shillong Pla-
teau and Mikir Hills (see summary by Ghosh et
al., 2005). Although there are overlaps between
the Rb-Sr ages and our newly acquired U-Pb zir-
con ages, our work does not indicate protracted
magmatism between 800 Ma and 600 Ma
(Fig. 8). We suspect that Neoproterozoic to Cam-
brian-Ordovician magmatism occurred during
a much narrower age range, and the semicon-
tinuous igneous activity as previously shown by
Ghosh et al. (2005) was largely due to the lack
of precision in the Rb-Sr method and its inability
to detect multiple thermal events. The absence
of detrital zircon ages from 900 Ma to 600 Ma
in one sample from the Shillong Group is con-
sistent with the lack of 800-600 Ma magmatism
in the region, while the presence of 800-600 Ma
zircons in other samples may have been derived
from remote sources exotic to the Indian craton.

We note that the three episodes of magma-
tism as inferred from our U-Pb zircon dating
are remarkably consistent with the three meta-
morphic events detected by chemical dating of
metamorphic monazites from the metamorphic
basement of the Shillong Plateau at 1600-1400,
1000-1300, and ca. 500 Ma, respectively (Chat-
terjee et al., 2007). This correlation suggests that
magmatism and metamorphism were coeval.

As shown in Yin et al. (2009), the eastern
Himalaya exposes augen gneisses with a nar-
rowly defined U-Pb age of ca. 1745 Ma. This
age was not detected by our work, but we note
that Ameen et al. (2007) obtained a sensitive
high-resolution ion microprobe (SHRIMP)
zircon *’Pb/*%Pb age of 1772 + 6 Ma from
basement rocks ~60 km west of the Shillong

Plateau (see Fig. 2 for sample location). Thus,
the lack of 1745 Ma orthogneiss in our study
could simply be a result of the small number of
dated samples.

Age of the Shillong Group and its Basement
Rocks

The U-Pb zircon ages of 480-500 Ma from an
undeformed pluton intruding the Shillong Group
place an upper age bound for its deposition.
That is, the youngest component of the Shillong
Group must have been deposited between
560 Ma (the youngest detrital zircon ages for
sample AY 02-04-06-[12]) and 500 Ma (the old-
est zircon age for the crosscutting pluton). How-
ever, these age relationships do not preclude the
existence of much older stratigraphic sections
in the Shillong Group, particularly for the strati-
graphic horizons at or below the position where
sample AY 02-04-06-(18) was collected. That
is, the deposition age of sample AY 02-04-06-
(18) could be significantly older than sample
AY 02-04-06-(12), even though the former is
farther from the contact between the crystalline
basement and the Shillong Group. We made this
interpretation because sample AY 02-04-06-
(18) lacks both the 900 Ma and 560 Ma zircons
that were detected in sample AY 02-04-06-(12).
Because sample AY 02-04-06-(18) is located
only ~12 km away from sample AY 02-04-06-
(12), the lack of zircon grains older than 900 Ma
may imply that its deposition occurred prior to
this age. This interpretation has major implica-
tions for determining the nature of the contact
between the Shillong crystalline basement and
the nearby Proterozoic Shillong Group. If the
contact is presently depositional, then the oldest
sedimentary sequence should lie directly above
the contact, and the younger stratigraphic sec-
tions should be exposed away from the contact,
which is inconsistent with our interpreted age
distribution for the Shillong Group as discussed
already. Thus, the contact between the basement
and the Shillong Group is likely a fault, as indi-
cated by our independent field observations.

Of course, the absence of younger zircons
could also be explained by the sample size,
which may have missed this minor component
as shown by the small number of grains in sam-
ple AY 02-04-06-(12). For the latter case, the
entire Shillong Group may all have deposited
after 560 Ma but before 500 Ma, bracketing its
total deposition time to be within ~60 m.y. Mitra
and Mitra (2001) suggested that the lower part
of the Shillong Group was deposited prior to
1550 Ma based on the Pb-Pb age of galena min-
eralization. This age constraint combined with
ours would make the total duration of deposi-
tion of the Shillong Group ~1000 m.y., which
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Figure 9. Concordia plots of detrital zircon ages of for samples AY 02-04-06-(12) and sample AY 02-04-06-(18).

appears to be too long and is not consistent with
the fact that a major tectonic event occurred
ca. 1100 Ma during the proposed period of
deposition of the Shillong Group. In our opin-
ion, the age of the Shillong Group is most likely
younger than 900 Ma (the youngest zircon age
in AY 02-04-06-[18]) and older than 530 Ma
(the oldest granite that intrudes into the Shil-
long Group). This interpretation implies that the
ca. 1100 Ma and ca. 1600 Ma orthogneiss units
and the metasedimentary rocks they intrude into
constitute the basement of the NE Indian cra-
ton overlain by the Proterozoic Shillong Group.
As we did not observe the base of the Shillong
Group, we cannot rule out its lowermost section
to have been deposited in the Paleoproterozoic.

Age of the Central Shillong Thrust and
Regional Contractional Deformation

The age of the Central Shillong thrust can be
inferred from the age of the Shillong Group and
a crosscutting pluton. Since the thrust cuts the
part of the Shillong Group that contains 560 Ma
detrital zircons, its motion must postdate this
age (Fig. 3A). Because a plutonic complex
consisting of three intrusive units intrudes the
thrust (gr-2a, gr-2b, and gr-2¢ in Fig. 3A), the
thrust motion predates the pluton. The western-
most part of this plutonic complex is made up of
gneissic foliation and yields a U-Pb zircon age
of ca. 520 Ma from sample AY 02-04-06-(9)
(Fig. 3A). This crosscutting relationship sug-
gests that motion on the Central Shillong thrust
must predate 520 Ma, but the continuous ductile
deformation producing gneissic foliation in the
pluton lasted after 520 Ma. The upper age of the
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regional contractional deformation can be con-
strained by the 500—480 Ma undeformed pluton
that we dated in the southern Shillong Plateau
(gr-2d in Fig. 3A). These observations suggest
that motion on the inferred Central Shillong
thrust occurred after 560 Ma but before 520 Ma,
and regional ductile contractional deformation
producing gneissic foliation and isoclinal folds
occurred between 520 Ma and 500 Ma.

We note that early Paleozoic deformation has
also been documented in the Himalayan orogen.
From the crosscutting relationships and the ages
of deformed and undeformed granitoids in the
Nepal Himalaya, Gehrels et al. (2006a, 2006b)
showed that north-south ductile contractional
deformation occurred between 484 Ma and
474 Ma in the Dadeldhura thrust sheet in far-west
Nepal and between 484 Ma and 473 Ma in the
Kathmandu Nappe in south-central Nepal. Early
Paleozoic high-grade metamorphism, possibly
associated with the same contractional event,
was also detected by U-Th/Pb dating of mona-
zite inclusions in garnets from Greater Hima-
layan Crystalline Complex units in the Nepal
Himalaya (Catlos et al., 2002; Kohn et al., 2004,
2005; Martin et al., 2007) and Sm-Nd dating of
garnets in the NW India Himalaya (Argles et al.,
1999). Combining the results from the Himalaya
and the Shillong Plateau, we conclude that the
northern and eastern margins of India experi-
enced widespread contractional deformation in
the Cambrian-Ordovician, possibly related to the
amalgamation of the Eastern Gondwana super-
continent during the Pan-African event (e.g.,
Meert, 2003; Collins and Pisarevsky, 2005).

The Shillong Plateau is located north of the
1100-900 Ma, northwest-trending Eastern Ghats

orogen, which was considered to be produced
by India-Antarctica collision during formation
of the ca. 1100-Ma Rodinia supercontinent
(Moores, 1991; Dalziel, 1991; Hoffman, 1991;
Li et al., 2008). Specifically, the high-grade
rocks of the Eastern Ghats belt of India have
been correlated with the Napier and Rayner
Complexes of Antarctica (e.g., Shaw et al.,
1997; Mezger and Cosca, 1999; Boger et al.,
2000; Kelly et al., 2002). The orogen later expe-
rienced magmatism and contraction between
550 Ma and 500 Ma during the amalgamation of
Eastern Gondwana (Ghosh et al., 2004; Collins
et al., 2007; Biswal et al., 2007). The similari-
ties in deformation and magmatic history of the
Eastern Ghats Belt and the Shillong Plateau sug-
gest that the 1100 Ma and 550-500 Ma orogenic
belts extend along the entire eastern margin of
the Indian subcontinent.

Correlation and Comparison of Lithologic
Units between the Himalaya and NE India

The U-Pb zircon ages of orthogneiss and
granitoids and the general age constraint on the
deposition of the Shillong Group allow us to
compare lithologic units from the eastern Hima-
laya and northeastern India (Fig. 10). Richards
et al. (2006) and Yin et al. (2009) showed that
the Greater Himalayan Crystalline Complex
includes orthogneiss with a U-Pb zircon age of
ca. 820-880 Ma. Orthogneiss of this age has not
been detected by this study in NE India, but this
could be an artifact of our small sample size.
The Greater Himalayan Crystalline Complex in
Bhutan contains detrital zircons with U-Pb ages
ranging from 980 Ma to 1820 Ma (Richards et
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Figure 10. Correlation of lithostratigraphic units between the Himalaya and northeastern India. The age assignment of northeastern Indian
units is based on the work of Das Gupta and Biswas (2000) and this study. The age assignment of the Himalayan lithologic units is based on
the work of Kumar (1997), Tewari (2001), Richards et al. (2006), and Yin et al. (2006).

al., 2006) and is similar to that for sample AY
02-04-06-(18) from the Shillong Group in NE
India. In Nepal, the Greater Himalayan Crystal-
line Complex is intruded by orthogneiss with
ages between 520 Ma and 480 Ma and contains
1100 Ma detrital zircons. This age range is simi-
lar to that for the Shillong Group. This corre-
lation implies that the protolith of the Greater
Himalayan Crystalline Complex in the Hima-
laya may be similar to the Shillong Group and
intruded 500 Ma orthogneiss.

In the Arunachal Himalaya, Kumar (1997)
inferred the presence of 1900-1650 Ma orthog-
neiss in the Lesser Himalayan Sequence (LHS)
based exclusively on Rb-Sr ages. Our work
from the same area broadly confirms this result
with crystallization ages tightly constrained to be
ca. 1700 Ma (see detailed discussion in Yin et al.,
2009). Also based on a Rb-Sr age, Bhargava
(1995) inferred the presence of 1100 Ma ortho-
gneiss in the Bhutan Lesser Himalayan Sequence.
Except in Bhutan, the 1100 Ma orthogneiss has
not been documented in the Himalaya, although
detrital zircons with this age are present in the
Greater Himalayan Crystalline Complex and
Tethyan Himalayan Sequence in Nepal and the
Greater Himalayan Crystalline Complex and
Lesser Himalayan Sequence in the eastern
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Himalaya (DeCelles et al., 2000; Gehrels et al.,
2003; Richards et al., 2006; Yin et al., 2006).
This observation indicates that the 1100 Ma zir-
cons in the Himalayan units did not occur in situ
but were transported mostly from a source out-
side the Himalayan Range. We suggest that the
Eastern Ghats orogen was the source of 1100 Ma
zircons in the Himalayan units.

The detrital zircon ages from the Arunachal
Himalaya range from 960 Ma to 3000 Ma
(Figs. 8E and 8F). The presence of microfos-
sils indicates that the uppermost part of the
Lesser Himalayan Sequence in Arunachal has
a Neoproterozoic—early Cambrian age (Tewari,
2001; Azmi and Paul, 2004). The detrital age
distribution differs from the age distribution
for the Lesser Himalayan Sequence in Nepal in
that it contains zircons younger than 1500 Ma
(Fig. 8D). Although the detrital zircons from
both the Shillong Group and the Arunachal
Lesser Himalayan Sequence display age clus-
ters at ca. 1100 Ma and 1600-1700 Ma, the
Arunachal zircons do not have the prominent
age gap between 1200 Ma and 1500 Ma as seen
in the Shillong Group samples.

The sedimentary strata of the Lesser Hima-
layan Sequence in Bhutan are interlayered either
tectonically or depositionally with 1750 Ma

metarhyolite (Richards et al., 2006), which has
not been detected from the Shillong Group.
Detrital zircon from the Bhutan Lesser Hima-
layan Sequence units exhibits three age patterns
(McQuarrie et al., 2008). The first is a con-
tinuous age distribution between 1000 Ma and
1700 Ma, similar to those from the Arunachal
Lesser Himalayan Sequence units. The second
is characterized by the presence of 500-600 Ma
detrital zircon. The third type contains 500—
600 Ma zircons but lacks 1000-1700 Ma zircon.
The presence of 500-600 Ma detrital zircon and
the absence of 1000-1700 Ma zircon are char-
acteristic of detrital zircon age distributions for
the Shillong Group. This comparison suggests
that although differences exist, there is consider-
able overlap in age distribution between detrital
zircons from the eastern Himalayan Lesser
Himalayan Sequence and the Shillong Group
in the northeastern Indian craton suggesting that
the two areas were depositionally linked.

The Tethyan Himalayan Sequence (THS)
in the Bhutan Himalaya has depositional ages
ranging from the late Proterozoic—Cambrian to
the Cretaceous (Bhargava, 1995). That is, the
lowermost Tethyan Himalayan Sequence has
a similar age to the uppermost Lesser Himala-
yan Sequence in the eastern Himalaya (Tewari,
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2001). Detrital zircon from the late Proterozoic
Tethyan Himalayan Sequence unit yields a
prominent age cluster at ca. 900 Ma and minor
clusters at 1500-1700 Ma and 2400-2500 Ma
(McQuarrie et al., 2008). This age distribution is
distinctively different from those of the Lesser
Himalayan Sequence in the eastern Himalaya.
Because only one sample has been analyzed so
far from the Tethyan Himalayan Sequence in the
eastern Himalaya (McQuarrie et al., 2008), it is
not clear if different age distributions between
the Tethyan Himalayan Sequence and Lesser
Himalayan Sequence are simply a result of
incomplete sampling.

The presence of 1600-1700 Ma (Richards
et al., 2006) and possibly 1100 Ma (Bhargava,
1995) orthogneiss units in the Lesser Himalayan
Sequence of the eastern Himalaya and NE India
suggests that both regions may have shared
the same crystalline basement belonging to the
Indian craton. Despite some detailed differ-
ences, the presence of age clusters at 1100 Ma
and 1600-1700 Ma for both the Lesser Hima-
layan Sequence in the eastern Himalaya and
the Shillong Group suggests that they might
be the same cover sequence originally on top
of the basement that includes the 1600 Ma and
1100 Ma orthogneiss. Correlation of the 500 Ma
plutons in the Shillong Plateau region and those
common in the Greater Himalayan Crystalline
Complex suggests that the Greater Himalayan
Crystalline Complex may have also been derived
from the Indian craton, since its pre-Cenozoic
geology is similar to that exposed in the Shillong
Plateau. First, widespread 500 Ma orthogneiss
in the Himalaya may correlate with those in
the Shillong region. Second, the age range of the
metasedimentary rocks in the Greater Himalayan
Crystalline Complex is quite similar to that for
the Shillong Group. Finally, as discussed in Yin
et al. (2009), the Greater Himalayan Crystalline
Complex in the eastern Himalaya also contains
orthogneiss with U-Pb zircon ages of 1700 Ma,
further supporting origination of the Greater
Himalayan Crystalline Complex from either the
Indian craton or a separated terrane, as proposed
by DeCelles et al. (2000), that has a similar
Mesoproterozoic basement to that of northeast-
ern India. Recent work by Murphy (2007) has
shown that the structurally defined Greater Hima-
layan Crystalline Complex rocks above the Main
Central thrust exposed in northern Himalayan
gneiss domes have Nd isotopic compositions
of Lesser Himalayan Sequence rocks. Since the
Lesser Himalayan Sequence rocks can be clearly
correlated with Indian cratonal rocks (DeCelles
et al., 2000), it is likely that the Greater Hima-
layan Crystalline Complex basement correlative
to the Lesser Himalayan Sequence is mostly
buried in the northern Himalayan Range.
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Cretaceous(?) Ductile Normal Shear Zone

The extensional kinematics of the North
Shillong Detachment are drastically different
from the widespread contractional structures
in the region. There are two possible tectonic
events that may have caused the observed exten-
sional deformation in northeastern India: (1) the
development of a passive continental margin
in the late Proterozoic around the Indian con-
tinent prior to ca. 500 Ma orogenic event (e.g.,
Collins and Pisarevsky, 2005), or (2) Cretaceous
breakup of the Gondwana (e.g., Srivastava et al.,
2005; Ghosh et al., 2005). For the first interpre-
tation, the ductile shear zone should have formed
during the deposition of the Shillong Group and
would predate the regional compression as rep-
resented by the development of regional gneissic
foliation and related northeast-trending folds.
The older age of the shear zone, compared to
the contractional event, would require the shear
zone to be folded during the ca. 500 Ma com-
pressional event. However, our field observation
indicates that the ductile shear zone postdates
folding and regional development of gneissic
foliation. This favors the interpretation for the
North Shillong Detachment to have developed
in the Cretaceous during the separation of
India from Antarctica (e.g., Powell et al., 1988;
Srivastava et al., 2005; Ghosh et al., 2005). The
best evidence supporting Cretaceous activity on
the North Shillong Detachment comes from the
work of Biswas et al. (2007). They showed Cre-
taceous U-Th/He and fission-track apatite cool-
ing ages from samples located in the footwall
of our mapped North Shillong Detachment. The
thermal history of the northern Shillong Plateau
as detected by modeling track-length distribu-
tions indicates rapid cooling between 95 Ma
and 70 Ma (Biswas et al., 2007), which prob-
ably reflects the duration of motion on the North
Shillong Detachment. We note that the lack of
Cretaceous strata in the footwall of the ductile
shear zone in the northern Shillong Plateau is
also consistent with our interpretation that the
North Shillong Detachment is a south-dipping
Cretaceous structure (Fig. 2). This interpretation
implies that the Cretaceous strata were absent in
the footwall of the detachment fault in the north-
ern Shillong Plateau at the onset of the India-
Asia collision. This is consistent with the lack
of Cretaceous strata in the eastern Himalaya
(Bhargava, 1995; Kumar, 1997).

Cenozoic Deformation

Morphologically, the northern margin of the
Shillong Plateau is not as sharply defined as the
linear southern margin, and basement rocks are
scattered across the Brahmaputra River Valley

toward the Himalayan Range (Figs. 2 and 3).
The northern margin of the plateau also makes
several sharp left-step bends along which the
Brahmaputra River course deflects (Figs. 2
and 3). Some of the deflections coincide with
northeast-striking active left-slip faults (Fig. 3;
also see following discussion).

Past investigators have focused mostly on the
plateau-bounding structures and have treated
the plateau as a rigid block (e.g., Bilham and
England, 2001). Our work suggests that the
plateau itself has also experienced extensive
and detectable Cenozoic deformation, mostly
expressed as active northeast-striking left-slip
faults. This finding is consistent with the earth-
quake fault-plane solutions obtained across the
Shillong Plateau, which indicate dominantly
left-slip faulting on northeast-trending planes
and right-slip faulting on the northwest-trend-
ing planes (Kayal and Zhao, 1998; Kayal et
al., 2006). It is also consistent with a recent
GPS study that implies a slip rate of ~5 mm/yr
across the Badapani-Tyrsad shear zone (Jade
et al., 2007). The northeast-striking left-slip
faults may root all the way into the mantle,
as suggested by the northeast-trending fastest
direction of shear-wave polarization below the
Shillong Plateau (Singh et al., 2006) and seis-
micity within the whole crust and upper mantle
(Mitra et al., 2005).

The active left-slip faults are parallel to the
dominant shear zones, thrusts, fold axes, and
gneissic foliation in the Shillong basement
and the Proterozoic Shillong Group, sug-
gesting that their occurrence may have been
controlled by preexisting fabrics. The high-
angle relationship between the dominantly
northeast-trending preexisting fabrics and the
east-trending Cenozoic Shillong uplift in the
Indian craton indicates that the development
of the Shillong Plateau was not controlled by
reactivation of preexisting weakness in the
Indian craton during the India-Asian colli-
sion. The presence of the Cenozoic left-slip
faults may also explain consistent apparent
left-lateral offsets of the Brahmaputra River
and the northern edge of the Shillong Plateau
(Fig. 2B), which imply that the magnitude
of left-slip motion on individual faults may
range from 10 to 30 km.

Bilham and England (2001) emphasized the
role of the south-dipping Oldham fault and
suggested that its coeval motion with the north-
dipping Dauki thrust to the south created the
Shillong Plateau. As the Oldham fault is only
present along the western half of the northern
plateau margin, its motion cannot explain the
uplift of the eastern Shillong Plateau or the
Mikir Hills farther to the east. The extensive
exposure of the basement rocks across the
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Brahmaputra River Valley also requires the
presence of an underlying north-dipping struc-
ture that could have uplifted both the Brahma-
putra River Valley and the generally northward-
tilting Shillong Plateau.

From the geodetic study of Bilham and Eng-
land (2001), the Dauki thrust cannot be a sim-
ple low-angle planar structure dipping at ~30°
because it would intersect the active high-angle
Oldham fault in the north. We note that the
Moho has an abrupt step immediately north and
south of Cheerapunjee from ~44 km to ~38 km
based on a receiver function study, possibly
resulting from fault offset (Mitra et al., 2005)
(Fig. 2B). We also note that the Moho is at a
depth of ~39 km at a distance of ~60 km north
of the Dauki thrust and lies at ~35 km below
the central Shillong Plateau (Mitra et al., 2005)
(Fig. 2B). The Moho depth increases gradually
north of the Shillong Plateau, varying from 40
to 42 km across the Brahmaputra River valley
to ~48 km immediately below the Main Central
thrust in the eastern Himalaya. This regional
dip of the Moho may be explained by a north-
dipping thrust zone that cuts across the whole
crust and locally duplicates the mantle litho-
sphere. In light of this model, the Brahmaputra
River Valley is a composite basin. It is the fore-
land basin of the eastern Himalayan thrust belt
and the piggyback basin of the lithospheric-scale
Dauki thrust zone. The Oldham fault, despite
having the ability to generate great earthquakes,
is a back thrust of the overall south-directed
thrust system in our interpretation (Fig. 2B).

Tectonic History of the Northeastern Indian
Craton

From this discussion, we propose the fol-
lowing history for the tectonic development
of northeastern India. Prior to deposition of
the Shillong Group, the northeastern Indian
craton experienced two episodes of magma-
tism at 1750-1600 Ma and 1150-950 Ma, as
detected both by our direct dating of ortho-
gneiss and the age clusters of detrital zircons
from the Shillong Group. The magmatic events
may have been related to arc development and
subsequent continental collisions that built the
proto-Indian continent (Figs. 11A and 11B).
Specifically, the 1100 Ma event in northeastern
India correlates well with the development of
the Eastern Ghats orogenic belt during colli-
sion between India and Antarctica (e.g., Kelly
et al., 2002) (Fig. 12). In addition to northern-
most India, which is currently subducted below
the Tibetan Plateau, India was probably linked
with the Lhasa terrane at the time (e.g., Chang
and Zheng, 1973; Allegre et al., 1984; Hsii et
al., 1995; cf. Sengor, 1984). We suggest that
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the first separation of India from Antarctica did
not occur until the late Proterozoic during the
deposition of the Shillong Group (Figs. 11C
and 12). The presence of abundant quartz aren-
ite and the lack of 520-480 Ma zircon ages sup-
port our interpretation that the Shillong Group
was deposited in a passive-margin setting.

Less than 30 m.y. after the cessation of depo-
sition of the Shillong Group, westward oceanic
subduction (in present-day orientation) started
below the eastern Indian margin and produced
arc magmatism between 520 and 480 Ma
(Figs. 11D and 12). The closure of the ocean
between India and Antarctica led to the formation
of Eastern Gondwana (e.g., Meert, 2003; Col-
lins and Pisarevsky, 2005; Collins et al., 2007).
Intense regional contraction occurred between
520 Ma and 500 Ma, which was expressed by
the development of the Central Shillong thrust
and isoclinal folding in the Shillong Group.
Postkinematic plutons with ages ranging from
500 Ma to 480 Ma or even younger (i.e., unde-
formed granitoids in Fig. 3A) may have been
generated after the collision between Antarctica
and India (Fig. 11E).

Between 460 Ma and 140 Ma, northeastern
India was part of stable Eastern Gondwana and
received cratonal sediments mostly during the
Permian (Fig. 11F). The cause of Permian sed-
imentation could have been due to a thermal
event in the mantle or a change in sea level.
The Mesozoic breakup of Eastern Gondwana
was expressed by separation of the Lhasa ter-
rane from India in the Late Triassic and Early
Jurassic (e.g., Allégre et al., 1984; Yin and Har-
rison, 2000; Dai et al., 2008) and separation of
Antarctica from India in the Cretaceous (e.g.,
Ghosh et al., 2005; Srivastava et al., 2005)
(Fig. 12). The latter generated east-dipping
extensional shear zones, as exemplified by the
North Shillong Detachment (Fig. 11G). Creta-
ceous rifting was associated with synrift sedi-
mentation and coeval intrusion and eruption of
mafic rocks. Postrift sedimentation continued
in the Late Cretaceous until the onset of con-
tractional deformation at or prior to the middle
Miocene (ca. 10 Ma) in the area (Figs. 11G
and 11H) (Biswas et al., 2007). The uplift of
the Shillong Plateau may have started in the
early Miocene at ca. 23—20 Ma, as indicated by
the progressive thinning of the Miocene strata
from the Sylhet Trough to the plateau (Fig. 111)
(Evans, 1964). The development of the east-
trending thrusts and folds along the southern
edge of the Shillong Plateau was accompanied
or immediately followed by the development
of northeast-striking left-slip faults that remain
active today (Fig. 2A).

Our model explains the contrasting lithol-
ogy between the Lesser Himalayan Sequence

and the Greater Himalayan Crystalline Com-
plex in the Cenozoic Himalayan orogen. The
former lacks 500 Ma granites, whereas the lat-
ter has them. This contrast may be explained
by our model such that the Greater Himalayan
Crystalline Complex was located within the
Cambrian-Ordovician arc, while the Lesser
Himalayan Sequence was deposited in a ret-
roarc setting. The two features may have been
separated by a cratonward-directed early Pro-
terozoic thrust belt as proposed Gehrels et al.
(2003) (Fig. 12C).

CONCLUSIONS

Our combined structural and geochrono-
logical work reveals three episodes of igne-
ous activity at ca. 1600 Ma, ca. 1100 Ma, and
ca. 500 Ma, respectively. We relate the 1600 Ma
event to the collision of two proto-India conti-
nental blocks, the 1100 Ma event to collision
between India-Antarctica and Australia—South
Tibet during the formation of Rodinia, and the
500 Ma event to the amalgamation of Eastern
Gondwana. Our study also documents three
ductile-deformation events at ca. 1100 Ma,
520-500 Ma, and during the Cretaceous. The
first two events were contractional, induced by
assembly of Rodinia and Eastern Gondwana,
while the last event was extensional, related to
breakup of Gondwana. Because of its proxim-
ity, the 500 Ma contractional deformation in
the Shillong region implies that any attempt to
determine the magnitude of Cenozoic deforma-
tion in the Himalaya using Proterozoic strata
as marker beds must first remove the effects
of early Paleozoic deformation. The chrono-
stratigraphy of the Shillong Plateau established
by this study implies that the Greater Himala-
yan Crystalline Complex is a tectonic mixture
of Indian crystalline basement and its Protero-
zoic-Cambrian cover sequence intruded by
an early Paleozoic arc. Although the Shillong
Plateau has been treated as a rigid block during
Cenozoic deformation, our work demonstrates
that its interior is dominated by distributed
active left-slip faults, an observation consistent
with the existing fault-plane solutions in the
region and which has important implications
for future management of earthquake hazards
in northeast India.
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