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We present the first mechanical analysis based on realistic rheology and boundary conditions on the
formation of evenly spaced strike-slip faults. Two quantitative models employing the stress-shadow con-
cept, widely used for explaining extensional-joint spacing, are proposed in this study: (1) an empirically
based stress-rise-function model that simulates the brittle-deformation process during the formation of
evenly spaced parallel strike-slip faults, and (2) an elastic plate model that relates fault spacing to the
thickness of the fault-hosting elastic medium. When applying the models for the initiation and develop-
ment of the tiger-stripe fractures (TSF) in the South Polar Terrain (SPT) of Enceladus, the mutually con-
sistent solutions of the two models, as constrained by the mean spacing of the TSF at �35 km, requires
that the brittle ice-shell thickness be �30 km, the elastic thickness be �0.7 km, and the cohesive strength
of the SPT ice shell be �30 kPa. However, if the brittle and elastic models are decoupled and if the ice-
shell cohesive strength is on the order of �1 MPa, the brittle ice shell would be on the order of �10 km.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Researchers generally agree that the geologically active South
Polar Terrain (SPT) of Saturn’s icy moon Enceladus lies over a regio-
nal sea (Collins and Goodman, 2007; Iess et al., 2014; McKinnon,
2015), or even a global ocean (Patthoff and Kattenhorn, 2011;
McKinnon, 2015; Thomas et al., 2015), with a total ice shell thick-
ness of 30–40 km above a liquid water layer (Iess et al., 2014).
However, they strongly disagree on the thickness of its brittle ice
shell, with current estimates varying from 2 km to 35 km (Gioia
et al., 2007; Smith-Konter and Pappalardo, 2008). The large dis-
crepancy can be attributed to the fact that different studies assume
different physical processes for the formation of the tiger-stripe
fractures (TSF), the most dominant tectonic features within the
SPT (Porco et al., 2006) (Fig. 1). Based on modeling shear heating
along the TSF, Roberts and Nimmo (2008) derive a minimum value
of �5 km for the SPT ice-shell thickness. By quantifying the effect
of tidal stress on driving alternating strike-slip motion along the
TSF, Smith-Konter and Pappalardo (2008) and Olgin et al. (2011)
show that the SPT ice shell is thicker than 2–4 km but must be
thinner than �40 km. Rudolph and Manga (2009) treat the TSF as
propagating tensile cracks and in this physical context they find
that the SPT ice shell is likely to be thinner than �25 km. Assuming
that (1) the TSF have an extensional origin and (2) the fracture-
hosting ice-shell thickness equals to the spacing of the TSF, Gioia
et al. (2007) inferred the thickness of the SPT ice shell to be
�35 km without providing a quantitative mechanical reason.
Helfenstein and Porco (2015) suggest that the brittle ice shell near
the tiger-stripe fractures is �5 km assuming that the spacing of
their observed minor en echelon shear fractures within the TSF
zones has a 1:1 ratio to the ice shell thickness. Similar to the work
of Gioia et al. (2007), Helfenstein and Porco (2015) did not provide
the mechanical basis for the assumed spacing vs. layer thickness
ratio.

Except the work of Helfenstein and Porco (2015), most of the
aforementioned ice-shell thickness estimates are based on the
view that the TSF were initiated as tensile fractures and were later
reactivated as strike-slip faults with alternating senses of shear
driven by the diurnal tidal stress (Gioia et al., 2007; Nimmo
et al., 2007; Matsuyama and Nimmo, 2008; Helfenstein et al.,
2006, 2008; Rudolph and Manga, 2009; Patthoff and Kattenhorn,
2011; Walker et al., 2012). However, this widely accepted scenario
is challenged by new geologic mapping based on a systematic and
detailed structural investigation of major fracture zones in the SPT
using high-resolution images (Yin and Pappalardo, 2015). Specifi-
cally, the kinematic analysis shows that the TSF were initiated
and have continued to move as left-slip faults (Yin and
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Fig. 1. Simplified tectonic map of the South Polar Terrain based on the analysis of images obtained by Cassini orbiter’s Imaging Science Subsystem (ISS) and constructed by
the CICLOPS team (i.e., Cassini imaging team); the mosaic is in the south polar projection. Tiger-stripe fractures in the South Polar Terrain of Saturn’s moon Enceladus. Each
fracture is �135 km long and spaced �35 km from one another. The left-slip fault interpretation is based on the work of Yin and Pappalardo (2015). Coordinate points SS, AS,
LE, and TE are longitudinal directions from the South Pole pointing toward the sub-saturnian (0� longitude), anti-saturnian (180�W), leading-edge (90�W), and trailing-edge
(270�W) points on the equator of Enceladus, respectively. Abbreviations: AX, Alexandria fracture; CR, Cairo fracture; BD, Baghdad fracture; DM, Damascus fracture; ‘‘E”, a
newly designated fracture by Yin and Pappalardo (2015).
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Pappalardo, 2015) (Fig. 1) with perturbations as transient tensile
fractures induced by tidal stress (Nimmo et al., 2014). The revela-
tion that the TSF are left-slip structures (Yin and Pappalardo, 2015)
demands a new mechanical scheme that is capable of relating the
well documented TSF spacing (�35 km) (Fig. 1) to the SPT ice-shell
thickness and the mechanical properties of the TSF and hosting icy
crust on Enceladus.

When searching through the existing literature, we were sur-
prised to find that a physical model, with realistic boundary condi-
tions and elastic rheology (cf., Roy and Royden, 2000a, 2000b) for
brittle crust deformation, that relates the spacing of strike-slip
faults to the thickness of the brittle layer hosting the faults has
never been developed, although parallel and evenly spaced
strike-slip faults occur widely on Earth. Terrestrial examples of
parallel strike-slip fault systems include those spaced at �40 km
along the southern San Andreas system (e.g., Sylvester, 1988), at
300–400 km across central Asia (e.g., Yin, 2010), at 200–300 km
in central and northern Tibet (Yin and Harrison, 2000; Taylor
et al., 2003; Taylor and Yin, 2009), and (4) at 150–400 km in
northern China (e.g., Yin et al., 2015). In this study, we address
the fundamental question of what controls the spacing of parallel
strike-slip faults by developing a new quantitative model based
on the stress-shadow concept of Lachenbruch (1961).

The stress-shadow concept states that the formation of an
extensional fracture in a layer of rock under regional extension
imposes a local stress-boundary condition that causes stress-
magnitude reduction next to the fracture. This process is com-
monly referred to as the stress-shadow effect (Lachenbruch, 1961),
which creates regions of low stress magnitude below the tensile
strength of intact rock next to the fracture. Because of this effect,
no new fractures can be generated within the low-stress regions
immediately next to the early formed fractures; the critical dis-
tance defining the width of the low-stress zone measures the
length of stress shadow. As new extensional fractures can only
be created immediately outside the stress shadow, and the stress
shadow length must be equal to the fracture spacing. It is this sim-
ple concept that has been used to quantify the occurrence of evenly
spaced extensional joints on Earth (e.g., Pollard and Segall, 1987;
Gross, 1993).

In this study, we use the stress-shadow concept of Lachenbruch
(1961) to formulate three quantitative models for the formation of
parallel strike-slip faults. The first model is based on an analytical
solution of stress distribution induced by movement on an
anti-plane (i.e., mode-III) crack driven by a remote fault-parallel
shear stress (i.e., strike-slip motion on a crack). As detailed below,
this model, based on linear elastic fracture mechanics, is appropri-
ate for modeling shallow faults within the uppermost part of the
Earth’s crust, but it is unrealistic for modeling the TSF that cut
through the entire SPT ice shell (Porco et al., 2006). To overcome
this limitation, we derive two alternative models by assuming that
the SPT ice shell deforms either as a perfect plastic material gov-
erned by the Coulomb fracture criterion (also known as Coulomb
failure criterion) or as a linear elastic solid governed by Hooke’s
law. Using these two models, we estimate the brittle ice-shell
thickness to be �30 km, the elastic thickness to be �0.7 km, and
the cohesive strength of the ice shell to be �30 kPa for the South
Polar Terrain that hosts the tiger-stripe fractures.
2. Stress–strain curves for ice deformation in the elastic and
plastic regimes

It has been long known that the stress–strain relationships for
ice are similar to those of rocks (e.g., Sinha, 1978; Hutter, 1983;
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Schulson, 2001). That is, under a low-stress condition the induced
strain is elastic and linearly proportional to stress as described by
Hooke’s law (e.g., Sinha, 1978) (Fig. 2A). When stress is higher than
the elastic limit, the corresponding strain is non-linearly related to
the stress and the induced deformation is irreversible (i.e., plastic)
(Sinha, 1978; Hutter, 1983; Mellor and Cole, 1983) (Fig. 2A). A
continuous increase in the stress magnitude leads to brittle failure
as expressed by the formation of fractures (Schulson, 2001)
(Fig. 2A).

As the shear-stress magnitude increases with depth in an ice
shell (Fig. 2A), we envision that the topmost part of the SPT ice
shell behaves elastically (Fig. 2B). That is, deformation in this
portion of the ice shell is reversible once the load is removed. In
reality, the top elastic layer of the ice shell may behave
visco-elastically and its rheological behavior is determined by the
Maxwell time, defined as s ¼ g

E, where E is the elastic shear modu-
lus and g is the Newtonian viscosity of the ice shell, respectively
(see Table 1 for definition of all variables used in this study). Defor-
mation of the ice shell is dominantly elastic for s� 1 but viscous
for s� 1. In this study, we neglect viscous deformation and focus
only on the mechanical controls for the initiation of the TSF and the
Fig. 2. (A) A typical stress–strain curve for ice under uniaxial deformation (see text for de
member model assuming the brittle ice shell of the SPT is composed of only an elastic lay
of only a plastic layer.
subsequent maintenance of their motion via elastic and brittle
deformation.

At a greater depth where shear stress magnitude is high, the
stress magnitude exceeds the elastic limit and deformation of the
ice shell behaves plastically (Fig. 2B). For both plastic and elastic
deformation, we envision that their brittle failure is controlled by
the same Coulomb fracture criterion, which is expressed as the
brittle fracture strength envelope in Fig. 2B. In the models develop-
ment below, we assume that the SPT ice shell is either entirely
elastic as shown in Fig. 2C, or completely plastic as shown in
Fig. 2D. This treatment allows us to estimate the elastic and plastic
thickness of the SPT ice shell as end-member cases, labeled as hE
and hB in Fig. 2C and D, respectively.

3. A stress-shadow model based on a fracture mechanics
solution

The basic idea of a stress-shadow model may be illustrated by a
sequential formation of extensional fractures (Lachenbruch, 1961;
Nur, 1982; Pollard and Segall, 1987) (Fig. 3A–C). A layer of rock is
under regional extension induced by exerting a remote normal
tails). (B) Proposed depth-dependent rheological profile of the SPT ice shell. (C) End-
er. (D) End-member model assuming that the brittle ice shell of the SPT is composed



Table 1
Model parameters and references. Sources: [Ref. 1]: These values were converted from
the experimentally determined uniaxial tensile strength of fresh-water and salt-
water ice at �10 �C and �40 �C reported in Schulson (2001). [Refs. 2 and 3]: Dempsey
et al. (1999) and Dempsey (2000). [Ref. 4]: Schulson (2002). [Ref. 5]: Schulson and
Fortt (2012). [Ref. 6]: We use the density of sea ice from Timco and Frederking (1996)
for the South Polar Terrain (SPT) ice shell. This is because the SPT surface is very
young and nearly free of craters, raising the possibility that the entire ice shell was
juvenile rather than be reworked. [Ref. 7]: According to Iess et al. (2014), the density
of the warm ice in the SPT is�8% higher than that of the cold brittle ice above. [Ref. 8]:
Schenk and McKinnon (2009). [Ref. 9]: Porco et al. (2006). SPT = South Polar Terrain.

Physical parameters Symbol Value used in model
calculations

Elastic shear modulus E Not used in model
calculation

Newtonian viscosity g Not used in model
calculation

The Maxwell time s = g/E s� 1
Normal stress rn

Shear stress rs

Regional normal stress during
formation of tensile cracks

rr
n

Normal stress on an extensional
fracture surface

rc
n

Tensile strength of rock/ice T
Shear stress on a strike-slip fault rc

s

Shear strength of the SPT ice shell Y
Shear strength of the ice shell

bounding the SPT
YBR

Depth-averaged shear strength in
and outside the SPT

Y , YBR Determined from shear
strength of ice

Elastic and brittle ice-shell thickness
of the SPT

hE, hB Determined by models
from this study

Ice-shell thickness in regions outside
the SPT

H Determined using Airy
isostasy

Frictional cohesive strength of the
tiger-stripe fractures

C1 Set to be zero in this
study

Cohesive strength of intact ice within
and outside the SPT

C0 = CBR 1.7–5.7[Ref. 1] or 11–
38 kPa[Refs. 2,3]

Pore-fluid pressure ratios in ice and
along fault surface

ku , kf Set to be zero

Coefficient of internal friction/
friction of ice and fault

lu and lf Same as the effective
coefficients

Effective internal coefficient of
friction of intact ice

lu ¼ lu
BR 0.53–0.58[Ref. 4]

Effective coefficient of friction for the
tiger-stripe fractures

lf 0.37–0.53[Ref. 5]

Acceleration of surface gravity on
Enceladus

g 0.133 m/s2

Density of the cold brittle ice shell q1 720–940 kg/m3[Ref. 6]

Density of the warm ductile ice shell q2 990 kg/m3[Ref. 7]

Topographic relief between the SPT
and surrounding area

e 0.5–1.0 km[Ref. 8]

Brittle ice-shell thickness of the SPT h Estimated in this study
Spacing of tiger-stripe fractures S 35 km[Ref. 9]
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stress (rn) that has a magnitude of rn ¼ rr
n (Fig. 3A). If the magni-

tude of the remote stress rr
n is higher than the tensile strength of

the rock, T, fractures in the rock layer will be created (Fig. 3B).
Once formed, the presence of the newly created extensional

fracture enforces a local stress-boundary condition (Fig. 3B). In
modeling extensional joints, the normal stress on the fracture
surface (rc

n) is commonly set to be zero (i.e., it is treated as a
stress-free surface; see Pollard and Segall, 1987). This stress-free
condition on the extensional-fracture surface causes reduction of
the normal-stress magnitude in regions immediately next to the
fracture (Fig. 3B). The stress reduction in turn introduces the stress
shadow effect, which is expressed by the existence of regions next
to a fracture that has normal-stress magnitude below the tensile
strength of intact rock (Fig. 3B).

Because of the stress-shadow effect, other extensional fractures,
which were created either simultaneously or at later times than
the fracture mentioned above and shown in Fig. 3B, can only form
immediately outside the stress shadow regions (Fig. 3C). The aver-
aged spacing of the fractures should be equal to the length of the
stress shadow, S, although the spacing may vary from S to <2S as
no new fractures can be created within the overlapping stress
shadows of the two neighboring fractures. The length of the stress
shadow, equals to the fractures spacing (S), can be defined by the
following relationship:

rnðx ¼ SÞ ¼ T ð1Þ
where T is the tensile strength of the crack-hosting medium and
rn(x) is the normal stress within the rock layer as a function of
distance from the fracture (Fig. 3B). We use the sign convention
of positive for tensile stress in this study.

If the tensile strength T is uniform in the medium under exten-
sion, the resulting extensional joint spacing should be a constant.
The joint spacing, S, can be determined by solving Eq. (1) if the
functional form of rn(x) is known. In existing studies, the relation-
ship between joint spacing and the tensile strength of the joint-
hosting medium is determined by a linear-elastic-fracture-mechan
ics (LEFM) solution of stress distribution induced by the presence
of a mode-I crack in an infinite elastic medium under regional
extension (Lachenbruch, 1961; Pollard and Segall, 1987). That is,
an extensional joint is approximated as an opening (i.e., mode-I)
crack.

Because strike-slip faults are commonly treated as anti-plane
(i.e., mode-III) cracks, a similar approach may be adopted by deter-
mining the relationship between strike-slip-fault spacing and the
shear strength of the fault-bounded domains consisting of intact
rock/ice under regional strike-slip shear. A key difference between
an extensional crack and a strike-slip anti-plane crack is that the
magnitude of the shear stress on an anti-plane crack is not zero,
but instead equals to the frictional strength of the crack plane
(cf., Roy and Royden, 2000a, 2000b). As long as the regional stress
is greater in magnitude than both the fault frictional strength and
the shear fracture strength of the intact fault-hosting rock/ice, the
stress-shadow mechanism should operate and evenly spaced
strike-slip faults should form if all the strike-slip faults have the
same frictional strength and the fault hosting layer has the same
shear-fracture strength (Fig. 3E; cf. Fig. 3D). In contrast, spatial
variability of fault strength and/or the shear-fracture strength of
the fault-bounded ice and crustal domains would lead to the for-
mation of unevenly spaced parallel strike-slip faults (Fig. 3D).

Treating the strike-slip faults as mode-III cracks in an elastic
half space, the shear stress parallel to the direction of strike-slip
motion can be written as (Pollard and Segall, 1987):

rxzðrÞ ¼ rr
s þ ðrr

s � rc
sÞ½rR�1 cosðh�HÞ � 1� ð2Þ

where r and h are the coordinate variables in a polar coordinate sys-
tem, R ¼ ffiffiffiffiffiffiffiffiffi

r1r2
p

, H = (h1 + h2)/2 (Fig. 4A), rxz(r) is the shear stress in
the fault-motion direction, rr

s is the regional shear stress parallel to
the crack assumed to be constant with depth, and rc

s is the shear
stress on the fault plane also assumed to be constant over the fault
plane. The Cartesian coordinate axes x1 = x, x2 = y, and x3 = z are
defined in Fig. 4B. Note that x1 = x and x3 = z lie on the surface
following the convention in fracture mechanics, with x1 = x perpen-
dicular to the fault. The shear stress in the fault-slip direction at the
surface can be evaluated using Eq. (2) (Pollard and Segall, 1987) as:

rxzðxÞ ¼ rr
s þ ðrr

s � rc
sÞ

jxj
ðx2 þ h2Þ1=2

� 1

2
4

3
5 ð3Þ

where x is the distance from the vertical fault at the surface, and h is
the fault depth in the y direction (Fig. 4). If the surface shear stress
in Eq. (2) creates new strike-slip faults next to an earlier formed
fault and the shear-fracture strength of the fault-bounded domains



Fig. 3. (A)–(C), a conceptual model for the formation of evenly spaced joints due to the stress-shadow effect. (A) A layer is under regional extension with a remote normal
stress rn ¼ rr

n. (B) The presence of a fracture would cause local stress reduction and this shadow effect would prevent fractures to formwithin a critical distance S. (C) Because
of the stress-shadow effect, the formation of the fractures in the deformed region are spaced by the critical distance S. (D) and (E) Explanation for the formation of the evenly
spaced strike-slip faults due to the stress-shadow effect. See text for details.
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Fig. 4. (A) Relationship between polar and Cartesian coordinate systems for solving an anti-crack problem using linear elastic fracture mechanics. See text for the definition of
the symbols in the sketch. (B) A strike-slip fault is treated as an anti-plane crack in an elastic half space. The off-fault shear stress rxz satisfies the boundary conditions of
rxzðx ¼ 0Þ ¼ rC

s and rxzðx ¼ 1Þ ¼ rr
s .
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is uniform, then the stress-shadow length (S) that equals to the fault
spacing can be defined by:

rxzðx ¼ SÞ ¼ Y ¼ rr
s þ rr

s � rc
s

� � S

ðS2 þ h2Þ1=2
� 1

2
4

3
5 ð4Þ

where Y is the shear-fracture strength of the fault-bounded
domains and rc

s is the shear stress on the fault. The regional stress
and the stress on the fault plane are constrained by the rock shear-
fracture strength and the fault frictional strength, which can be
obtained respectively by their vertically averaged values as

rc
s ¼

1
h

Z h

0
ðC1 þ lfq1gyÞdy ¼ C1 þ 1

2
lfq1gh ð5Þ

and

Y ¼ 1
h

Z h

0
ðC0 þ luq1gyÞdy ¼ C0 þ 1

2
luq1gh ð6Þ

where rc
s is the vertically averaged frictional strength on the fault

plane, and Y is the vertically averaged rock shear-fracture strength,
h is the fault depth in the elastic half space, q1 is the density of the
fault-bounded medium, g is the gravitational acceleration, y is a
coordinate axis pointing downward, C0 and lu are the cohesive
strength and the effective coefficient of internal friction for the
fault-bounded domains, and C1 and lf are the cohesive strength
and the effective coefficient of fault friction, respectively. The use
of effective frictional and shear-fracture strength of faults and
fault-bounded medium is to incorporate the possible effect of
pore-fluid pressure in strength reduction in porous ice-shell mate-
rials, with lu ¼ ð1� kuÞlu and lf ¼ ð1� kf Þlf , where ku and kf
are the pore fluid ratios in the fault-bounded ice domains and along
the fault planes, respectively, and lu and lf are the coefficient of
internal friction and coefficient of friction for the fault-bounded
domains and along the fault surfaces, respectively.

We assume that the vertically averaged magnitude of the regio-
nal shear stress rr

s is equal to the vertically averaged shear strength
of the stronger but still deforming region bounding the strike-slip
domain with shear strength linearly proportional to a depth of H
(Fig. 5). Under this assumption, the regional-stress magnitude
equals to the strength of the bounding region, which can be
obtained by

rr
s ¼ YBR ¼ 1

H

Z H

0
ðCBR þ lu

BRq1gyÞdy ¼ CBR þ 1
2
lu

BRaq1gh ð7Þ

where YBR is the yield strength of the stronger bounding region, CBR
is the cohesive strength of the bounding-region ice shell, lu

BR is the
effective coefficient of internal friction of the bounding-region ice
shell, H is scaled by a = H/h > 1 as a measure of the regional-stress
magnitude relative the stress on the fault plane. By setting
C0 = CBR and lu

BR ¼ lu, assuming that the TSF cut through the entire

brittle ice shell, and inserting rc
s , Y , and rr

s defined in Eqs. (5)–(7)
into Eq. (2), we can relate fault spacing S to the brittle ice-shell
thickness h by the following relationship

S¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0�C1þ1

2q1ghðlu�lf Þ
h i2

h2

C0�C1þ1
2q1ghðlua�lf Þ

h i2
� C0�C1þ1

2q1ghðlu�lf Þ
h i2� �

vuuuuut
ð8Þ

The above solution is valid only if the fault depth are much shal-
lower than the thickness of the brittle ice shell, so the fault can
be treated as a half crack in a half elastic space (Pollard and Segall,
1997). As the TSF must cut throughout the entire SPT ice shell
(Porco et al., 2006, 2014), the assumption that the TSF are embed-
ded in an elastic half space in Eq. (8) is unrealistic for Enceladus.
An additional issue with the solution shown in (8) is that it assumes
the creation of strike-slip faults to have been driven by the fault-
parallel shear stress at the surface only. As indicated in Eq. (2), the
fault-parallel shear stress increases with depth and thus
the lowest-magnitude shear stress at the surface is unlikely to be
the main driving force for the creation of parallel strike-slip faults.
In the sections below, we outline two alternative models to address
this issue.



Fig. 5. Model parameters used in calculating the ice-shell thickness in the South Polar Terrain based on the spacing of the tiger-stripe fractures.
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4. A stress-rise function model in a perfectly plastic medium

We assume that the medium to be faulted in the SPT ice shell is
a prefect plastic material and its shear failure is governed by the
Coulomb fracture criterion (also known as the Coulomb failure
criterion). Under this assumption, we seek a stress distribution in
this medium that satisfies the following boundary conditions:

rxzðx ¼ 0Þ ¼ rc
s ð9aÞ

rxzðx ¼ 1Þ ¼ rr
s ð9bÞ

where rxz(x) is the shear stress parallel to the strike-slip motion
that varies as a function of distance from the fault plane, rc

s is shear
stress on the fault surface that is equal to the depth-averaged
frictional strength on the fault plane, and rr

s is a constant and rep-
resents the regional/remote shear stress parallel to strike-slip
motion. The above equations simply state that the fault-parallel
shear stress equals to the fault frictional strength at the fault surface
and this shear stress approaches the regional stress at the infinite.
Inspired by the solution for stress distribution induced by shear
along a mode-III crack (e.g., Pollard and Segall, 1987), we obtain a
general solution for the shear-stress distribution induced by motion
on a strike-slip fault that cut through an entire brittle crust (Fig. 6A)
as shown below:

rxzðxÞ ¼ rr
s þ ðrr

s � rc
sÞ

jxjn=m

ðjxjn þ hnÞ1=m
� 1

" #
ð10Þ

where rxz(x) is the depth-independent shear stress, x is a horizontal
axis and its value measures the distance from the fault toward the
regional stress, rr

s is the regional shear stress, rc
s is the shear stress

on the fault plane, h is the depth of the fault that cuts through the
entire brittle ice shell, n > 0, and m > 0 (Fig. 6A). Note that when
m = 2 and n = 2, the above solution is identical to that shown in
Eq. (3), which describes the stress field in an elastic medium
induced by shear slip on a crack. As shown below, when m = n = 1,
the above equation describes the deformation behavior of a plastic
material. Although exploring the physical meaning of the full
spectra of m and n is beyond the scope of this study, we tentatively
conclude that the values of m and n in Eq. (11) are governed by the
rheology of the material. However, we cannot rule out the possibil-
ity that boundary conditions may also play a role in determining the
values of m and n.

The function f ðxÞ ¼ jxjn=m
ðjxjnþhnÞ1=m

in Eq. (10), which is referred to as

the stress-rise function in this study, dictates how fast the stress
increases from a low value on the fault plane toward the higher
regional stress rr

s in the infinity. This function has the following
properties:

f ðx ¼ oÞ ¼ 0 ð11aÞ
f ðx ¼ 1Þ ¼ 1 ð11bÞ

f ðx ¼ hÞ ¼ 1

21=m ð11cÞ

The forms of the stress-rise function for various m and n values are
shown in Fig. 7. Note that whenm = 1 and n = 1, the stress-rise func-
tion displays the ‘‘smoothest” curve, with a gradual decrease in its
slope as a function of x (Fig. 7). Using Eq. (10), we can define the
length of the stress shadow, S, which equals to the fault spacing,
from the following expression:

rxzðx ¼ SÞ ¼ Y ¼ rr þ ðrr � rcÞ Sn=m

ðSn þ hnÞm
� 1

" #
ð12Þ

where Y is the shear-fracture strength of the fault-bounded
medium.

When applying Eq. (12) for modeling TSF spacing in the SPT in
particular and parallel strike-slip faults in general, we face the
problem of selecting m and n. The values of n and m in Eq. (12)
may be determined by additional rheological constraints or
boundary conditions as mentioned above. Rather than appealing
for a theoretical determination, we take an empirical approach
by noting that extensional joint spacing and the thickness of
joint-hosting layer are linearly related (see summary by Bai and
Pollard, 2000). In order to test if such a linear relationship also
holds for strike-slip faults, we performed a series of sandbox exper-
iments using dry sand and dry crushed walnut shells under strike-
slip shear deformation (Lin et al., 2015). First, we used a self-built
sliding device to derive the Coulomb fracture strength of the dry
sand and crushed walnut shells to be rs = 0.4647rn + 10.636 (Pa)
and rs = 0.54617rn + 4.608 (Pa), respectively, where rs and rn are
shear and normal stresses (see Table 1). Using these two materials,
we use an improved paired-shear-zone devise of Yin and Taylor
(2011) set up in the Department of Earth, Planetary, and Space
Sciences at University of California, Los Angeles, to create Riedel
shear fractures in two parallel strike-slip shear zones with opposite
senses of shear. The experiments lead to the following S–h relation-
ships: S/h = 0.52 ± 0.1 for dry sand and S/h = 0.84 ± 0.2 for crushed
walnut shells. Details of the experimental procedures, data acqui-
sition, data analyses, and dynamic scaling of the experimental



Fig. 6. (A) A vertically uniform shear stress is assumed to drive the formation and continuous motion of parallel strike-slip fault in a plastic medium. The off-fault shear stress
rxz satisfies the boundary conditions of rxzðx ¼ 0Þ ¼ rC

s and rxzðx ¼ 1Þ ¼ rr
s . (B) A vertically uniform shear stress is assumed to drive the formation and continuous motion of

parallel strike-slip fault in an elastic medium. The off-fault shear stress rxz satisfies the boundary conditions of rxzðx ¼ 0Þ ¼ rC
s and rxzðx ¼ LÞ ¼ rr

s .

Fig. 7. Dependence of stress-rise function on m and n. See text for details.

A. Yin et al. / Icarus 266 (2016) 204–216 211



212 A. Yin et al. / Icarus 266 (2016) 204–216
models to crustal/ice-shell-scale deformation on Earth and icy
satellites will be presented elsewhere.

The linear functional form for the S–h relationship requires
m = n = 1 in Eq. (12), which in turn leads to the following simple
relationship:

S ¼ ðY � rcÞ
ðrr

s � YÞ h ð13Þ

Eq. (13) may be used to estimate the brittle ice-shell thickness (h)
from fault spacing. For example, assuming Y ¼ 0:95rr

s and
rc = 0.7Y, we obtain a relationship of S = 5.7h. For the 35-km TSF
spacing, this relationship requires the brittle ice-shell thickness to
be �6 km. The above approach, widely used for modeling joint
spacing against joint-hosting layer thickness, involves arbitrary
assignments of the relative magnitudes among the shear strength
of the fracture-hosting medium, the fault strength, and the
regional-stress magnitude (Pollard and Segall, 1987).

In order to avoid these ambiguities in applying Eq. (13), we
replace rc, Y, and rr

s in this equation by their vertically averaged
values of rc , Y , and rr

s defined in Eqs. (5)–(7). For simplicity, we
set C0 = C2, lu

BR ¼ lu (i.e., the mechanical properties of the crustal
domain hosting strike-slip faults is the same as those of the stron-
ger and thicker bounding crust). Note that H in Eq. (7) in the cur-
rent situation denotes the brittle-crust thickness of the stronger
and thicker region bounding the strike-slip-fault crustal domain.
Under the above assumptions we obtain a new relationship
between S and h as:

S ¼ ðC0 � C1Þ þ 1
2q1ghðlu � lf Þ

1
2qghluða� 1Þ h ð14Þ

The only unknown variable in Eq. (14) is a = H/h, where H = e + h + r,
with e as the elevation difference between the SPT and its surround-
ing regions, h the thickness of the SPT ice shell, and r the ice-shell
root below the highlands surrounding the SPT (Fig. 5). The other
parameters in Eq. (14) can be determined by the mechanical prop-
erties of the faults and the fault-bounded domains listed in Table 1.
To determine the magnitude of a, we use the topographic relation-
ship between the SPT and its surrounding highlands. Assuming that
(a) a lighter brittle ice shell is compensated by a denser ductile ice
shell under Airy isostasy (i.e., the effective elastic thickness of the
ice shell is assumed to be zero), and (b) the elevation difference
of the SPT and its surrounding region is e (Fig. 5), the value of a
can be determined by

a ¼ H
h
¼ 1þ e

h
q2

q2 � q1

� �
ð15Þ

where q1 is the density of the colder and lighter brittle ice, and q2 is
the density of the warmer and denser ductile ice. Inserting (15) into
(14) leads to

S ¼ 2hðC0 � C1Þ þ ðlu � lf Þq1gh
2

luq1ge
q2

ðq2�q1Þ
ð16Þ

The modified relationship between S and h in Eq. (16) is linear only
if ðlu � lf Þ ¼ 0, which is generally the case for both rock and ice
(Schulson, 2001, 2002; Schulson and Fortt, 2012; Jaeger et al.,
2009). That is,

S ¼ 2ðC0 � C1Þ
luq1ge

q2
ðq2�q1Þ

h ð17Þ

As shown in Fig. 8, the S–h relationship is nearly linear when con-
strained by realistic physical and mechanical parameters for the
brittle and ductile ice with lu – lf , consistent with our empirical
assumption on the linear S–h relationship.
The average elevation difference between the SPT and its sur-
rounding highlands (Fig. 1) is �0.5 km (Thomas et al., 2007;
Schenk and McKinnon, 2009). The highland region is cut in several
places by extensional fractures that radiate from the marginal
zones of the SPT. However, there are no active strike-slip structures
parallel to the tiger-stripe fractures (Porco et al., 2006; Spencer
et al., 2009; Yin and Pappalardo, 2015). This observation implies
that the shear-fracture strength of the highland regions may not
be critically stressed, and thus, its mechanical strength places an
upper limit on the magnitude of regional shear stress that drives
the motion on the TSF. This bound on the regional-stress magni-
tude is now expressed by the elevation difference, e. For an eleva-
tion difference of 500 m (Schenk and McKinnon, 2009), the brittle
thickness of the ice shell as required by the 35-km TSF spacing is
�10.5 km, assuming that lu ¼ lu ¼ 0:58, lf ¼ lf ¼ 0:4,
q1 = 940 kg/m3, q2 = 990 kg/m3, g = 0.133 m/s2, and C0 = 1 MPa
(Fig. 8A) (Table 1).

The coefficient of friction for an ice-on-ice frictional surface var-
ies from 0.37 to 0.53 under Enceladus’s condition (Schulson and
Fortt, 2012) (Table 1). This range of values requires the thickness
of the brittle ice shell in the SPT to be 10.5–11.5 km (Fig. 8B),
assuming lu ¼ lu ¼ 0:58, q1 = 940 kg/m3, q2 = 990 kg/m3,
g = 0.133 m/s2, C0 = 1 MPa, and e = 500 m. This result indicates that
the estimates of the brittle ice-shell thickness are not sensitive to
the frictional strength of the TSF, consistent with our derivation
of the linear relationship between S and h in Eq. (17) when lu ¼ lf .

Laboratory studies indicate that the cohesive strength for fresh-
water and salt-water ice at �10 �C and �40 �C is between 1.7 MPa
and 5.7 MPa (Table 1), and the uncertainties of the experimental
results are typically in the range of ±0.4–0.6 MPa (Schulson,
2001). When using the cohesive strength of 0.5–1.5 MPa, the low-
est values obtained from the experimental work, we obtain an
upper-bound estimate of the brittle ice-shell thickness in the SPT
based on the relationship defined in Eq. (17). As shown in
Fig. 8C, the low values of the cohesive strength require the brittle
ice-shell thickness in the range of 8–18 km, assuming that
lu ¼ lu ¼ 0:58, lf ¼ lf ¼ 0:4, q1 = 940 kg/m3, q2 = 990 kg/m3,
g = 0.133 m/s2, and e = 500 m.

In contrast to the laboratory-determined cohesive strength on
the order of a few MPa, field tests of large floating sea ice indicate
that the cohesive strength may be much smaller as a result of its
dependence to sample size (Dempsey et al., 1999). For a sea-ice
sheet of 1 km in the longest dimension, its tensile strength is esti-
mated to be 11–38 kPa (Dempsey, 2000). Fig. 8D shows how the
lower cohesive-strength values impact the estimated thickness of
the brittle ice shell in the SPT using the observed 35-km spacing
of the tiger-stripe fractures. Specifically, for C0 = 40 kPa, 30 kPa,
and 1 kPa, respectively, the corresponding brittle ice-shell thick-
ness varies from 19.5 to 32 km (Fig. 8D). The plot in Fig. 8D
assumes lu ¼ lu ¼ 0:58, lf ¼ lf ¼ 0:4, q1 = 940 kg/m3,
q2 = 990 kg/m3, g = 0.133 m/s2, and e = 500 m.

Another uncertainty in estimating the brittle ice-shell thickness
comes from the potentially large range of values for the density of
the brittle-ice shell. This is because the process for the formation of
the SPT ice shell itself is not well understood. For example, if the
underlying ocean below the SPT ice shell consists of volatiles and
the SPT ice shell has been thickening due to cooling from below
(e.g., Manga and Wang, 2007) the ice shell may include pore space
filled with gas bubbles. This process would have created a sea-
ice-like brittle ice shell with a density lower than that of pure
ice. Sea ice on Earth has typical density values between 720 kg/
m3 and 940 kg/m3 (Timco and Frederking, 1996).

Estimating the density of the SPT ice shell also depends on
whether it is composed of crystalline or amorphous ice. Based on
a systematic spectral analysis, Newman et al. (2008) argue that



Fig. 8. Results of the stress-rise-function model when the strength and stresses used in the model are ice-shell thickness dependent. See text for details. The effect of model
parameters on the relationship between the fault spacing and the ice-shell thickness is illustrated in (A) for elevation difference, (B) for frictional strength of the tiger-stripe
fractures, (C) and (D) for cohesive strength of the ice shell, and (E) for the density of the brittle ice shell. The colored lines in each graph are defined by the labeled physical
quantities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the surface material near the TSF consists dominantly of crystalline
ice, whereas the regions away from the fractures are composed
mostly of amorphous ice. The density of amorphous ice at low tem-
perature typically has a density of �940 kg/m3 (e.g., Loerting et al.,
2011).

We estimate the density of the ductile ice shell below the SPT
based on the work of Iess et al. (2014). These authors infer from
gravity data that the brittle ice shell in the SPT is underlain by a
layer that is 8% denser. For a brittle-ice-shell density of 915 kg/
m3, the corresponding density of the ductile layer would be
�990 kg/m3. Fig. 8E shows how the choice of density for the
brittle-ice shell affects the estimated ice-shell thickness. For a
low ice-shell density of 740 kg/m3, the estimated ice-shell
thickness is only �1.2 km, whereas for a high ice-shell density of
940 kg/m3 the estimated ice-shell thickness is �10.5 km, assuming
lu ¼ lu ¼ 0:58, lf ¼ lf ¼ 0:4, q2 = 990 kg/m3, g = 0.133 m/s2,
C0 = 1 MPa, and e = 500 m.

5. An elastic-plate model

In the previous analysis, we assume that the SPT ice shell is a
perfect plastic material with its failure strength governed by the
Coulomb fracture criterion. We also assume the distribution of
the fault-parallel shear stress is governed by a stress-rise function
that satisfies the local and remote boundary conditions. In the
above approach we neglect the deformation path that leads to
the brittle failure driven by the regional stress. That is, the defor-
mation of the perfectly plastic material prior to its local shear
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failure could behave elastically, viscously, or visco-elastically,
among other possibilities. As a result, the estimated fault depth
corresponds to the thickness of the brittle ice shell, which is cut
from the top to the bottom of the ice shell by the modeled
strike-slip faults. Another important assumption of the stress-
rise-function model is that we set the remote stress boundary con-
dition arbitrarily at the infinity.

In order to estimate the elastic ice-shell thickness of the SPT, we
assume that the topmost part of the ice shell deforms elastically
when the shear stress is below the elastic limit, which is lower
than the shear-fracture strength of the ice shell. We also equate
the shear stress on the fault plane equals to the fault frictional
strength. That is,

rxzðx ¼ 0; y; zÞ ¼ rc
s ð18Þ

where rc
s is the vertically averaged shear stress acting on the fault

plane that is invariant on the fault plane (i.e., in the y and z
directions).

For the remote stress, we assume that there is a characteristic
distance L, at which the fault-parallel shear stress is equal to the
regional stress (Fig. 6B). That is,

rxzðjxj ¼ L; y; zÞ ¼ rr
s ð19Þ

where rr
s is the vertically averaged shear stress at a distance of L

from the fault. The vertical normal stress is assumed to lithostatic;
its depth-averaged value can be obtained as ryy ¼ � 1

2q1gh, where
q1 is the density of the elastic ice shell. The shear stresses acting
on the top and bottom of the elastic plate in the x and z directions
are set zero; that is, ryx = ryz = 0. Finally, we assume that the hori-
zontal stress components are invariant with depth, which is
expressed by the relationship of @rxx

@y ¼ @rzz
@y ¼ @rxz

@y ¼ @rzx
@y ¼ 0.

A general elastic solution of the problem can be obtained by
solving a bi-harmonic equation in the x–z plane (e.g., Fung, 1965;
Yin, 1989)

r4Uðx; zÞ ð20Þ
where U is the Airy stress function. The following form of an Airy
stress function satisfied the bi-harmonic equation in (20)

U ¼ k1xzþ 1
2
k3x2zþ k7z2 ð21Þ

where k1, k3, and k7 are constants to be determined by the boundary
conditions. This general solution can be related to the horizontal
shear- and normal-stress components by (Fung, 1965):

rxxðx; zÞ ¼ @2U
@x2

¼ k7 ð22aÞ

rzzðx; zÞ ¼ @2U
@x2

¼ k3z ð22bÞ

rxzðx; zÞ ¼ rzxðx; zÞ ¼ � @2U
@x@z

¼ �k1 � k3x ð22cÞ

The boundary condition rxzðx ¼ 0; zÞ ¼ rc
s requires k1 ¼ �rc

s , and

the boundary condition rxzðx ¼ L; zÞ ¼ rr
s requires k3 ¼ rr

s�rc
s

L

	 

. We

assume that k7 equals to the vertically averaged lithostatic pressure,
and rxxðx; zÞ ¼ ryyðx; zÞ ¼ � 1

2q1gh. Now we have the following solu-
tion for the distribution of three stress components parallel and
perpendicular to the fault plane:

rxxðx; zÞ ¼ �1
2
q1gh ð23aÞ

rzzðx; zÞ ¼ rr
s � rc

s

L

� �
x ð23bÞ

rxzðx; zÞ ¼ rc
s þ

rr
s � rc

s

L

� �
x ð23cÞ
Using this solution, we define the critical stress-shadow distance S
by letting rxzðx ¼ S; zÞ ¼ Y , where Y is the vertically averaged shear-
fracture strength. This condition leads to the following relationship:

rxzðx ¼ S; zÞ ¼ Y ¼ rc
s þ

rr
s � rc

s

L

� �
S ð24Þ

Assuming that the vertically averaged shear-fracture strength of the

highlands surrounding the SPT is YBR ¼ CBR þ 1
2l

BR
u q1gðhþ e q2

q2�q1
Þ,

and replacing rr
s and rc

s by their vertically averaged values, we
obtain

S ¼ LðY � rc
sÞ

ðYr � rr
sÞ

¼ C0 þ 1
2 ðlu � lf Þq1gh�L

C0 þ 1
2luq1g hþ e q2

q2�q1

	 

� 1

2lfq1gh
ð25Þ

In the above equation we assume that the cohesive strength and
coefficient of internal friction of the ice shell within and outside
the SPT are the same (i.e., CBR = C0, and lBR

u ¼ luÞ (see Table 1 for
their definitions). Note that the value of

YBR ¼ CBR þ 1
2l

BR
u q1gðhþ e q2

q2�q1
Þ is obtained under the assumption

of Airy isostasy, which means that our estimated elastic thickness
of the SPT ice shell should represent an upper bound. This is
because the elastic support in converting the topographic relief to
the elastic thickness of the surrounding highlands is neglected.

We set the characteristic length scale, L, to be a half width of the
SPT (�350 km) (Fig. 1) in the direction perpendicular to the TSF.
The relationship between S and h with varying C0 is shown in
Fig. 9A. Note that the mean spacing of 35 km for the TSF in the
SPT requires that the cohesive strength must be lower than
30 kPa and the elastic ice-shell thickness is less than 3.5 km
assuming that lu = 0.58, lf = 0.4, q1 = 940 kg/m3, q2 = 990 kg/m3,
g = 0.133 m/s2, and e = 500 m. For C0 = 0, lf varies from 0.4 to 0.5
on the TSF, the predicted elastic thickness by this model is <9 km
(Fig. 9B).

6. Discussion

In this study we examine two stress-shadow models that may
explain the formation of the evenly spaced TSF in the SPT of
Enceladus. The first model, referred to in this study as the stress-
rise-function model, is based on a general solution for plastic
deformation that contains a characteristic stress-rise function of

f ðxÞ ¼ jxjn=m
ðjxjnþhnÞm, with m = n = 1. Although the stress-rise-function

model does not assign a specific stress–strain relationship for
ice-shell deformation prior to its brittle failure, its solutions are
geologically and mechanically plausible for two reasons. First, the
predicted shear stress satisfies the required boundary conditions
at the modeled fault plane and at the far field. Second, the solutions
derived from this model yield a linear (for constant ice-shell and
fault strength) or nearly linear (for depth-dependent ice-shell
and fault strength) relationship between fault spacing and the
ice-shell thickness. The assumed linear S–h relationship is consis-
tent with the linear relationship between joint spacing and the
thickness of joint-hosting layers under brittle deformation (Bai
and Pollard, 2000) and our own preliminary sandbox experiments
(Lin et al., 2015). Hence, we interpret our estimated ice-shell thick-
ness based on the stress-rise-function model to represent the
brittle-layer thickness of the SPT ice shell.

Our second model, referred in this study as the elastic-plate
model, is based on a solution for stress distribution in an infinitely
long elastic plate that has a characteristic length scale for defining
the width of the plate (Fig. 6B). As the TSF have finite length, the
solutions obtained from this model may approximate the stress
state along a straight line perpendicular to the mid-point of the
modeled faults. Thus, the inferred spacing and the estimated



Fig. 9. Results of the elastic-plate model. The effect of model parameters on the
relationship between the fault spacing and the ice-shell thickness is illustrated in
(A) for the cohesive strength of the ice shell, (B) for the frictional strength of the
tiger-stripe fractures, and (C) for the characteristic length scale that defines the
stress gradient. See text for details.
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elastic thickness are valid if the left-slip TSF were first initiated in
the center and then propagated laterally toward the two ends.
Another important assumption in this model is that the shear

stress rises linearly with a gradient of rr
s�rc

s
L

	 

, where rr

s represents

the regional stress, rc
s represents the stress on the fault surface,

and L represents a half width of the SPT in the direction perpendic-
ular to the TSF (Fig. 6B). It is possible that the size of the SPT started
small and has expanded in aerial extent through time. If this were
the case, the value of L has to increase with time. Fig. 9C illustrates
the effect of variable L values on fracture spacing; a smaller L value
requires a thicker elastic ice shell whereas a larger L value requires
a thinner elastic ice shell. This relationship can also be alternatively
stated: for the same ice shell thickness, the larger the L value, the
wider the fault spacing. One way to think of the qualitative phys-
ical meaning of this latter statement is that a larger L value
requires a lower stress gradient, and it takes a longer distance
(i.e., wider fault spacing) for the stress value to reach the yield
strength of the ice shell.

Combining the stress-rise-function and elastic-plate models,
the observed spacing of the TSF in the SPT (Fig. 1) requires that
(a) the brittle ice-shell thickness to be �30 km (Fig. 8D), (b) the
elastic ice-shell thickness to be �0.7 km (Fig. 9A), and (c) the cohe-
sive strength of the SPT ice shell to be �30 kPa (Fig. 9). As men-
tioned above, the estimated brittle and elastic ice-shell thickness
is an upper bound because the assumed regional stress could be
smaller than the vertically averaged shear strength of the highland
regions surrounding the SPT. In this scenario, the predicted low
cohesive strength of �30 kPa implies that the magnitude of the
tensile stress in the SPT terrain is too low to be able to create pen-
etrating tensile cracks that cut through the entire brittle layer of
the SPT ice shell (Lee et al., 2005; Rudolph and Manga, 2009). How-
ever, one should keep in mind that if the two models are decoupled
and a high cohesive strength of 1 MPa is used for the brittle ice
shell, the predicted brittle layer thickness would be about 11 km
(Fig. 8C).

We note that our predicted thickness of the SPT ice shell is
remarkably consistent with other independent estimates. Analyz-
ing Enceladus’s degree 2 gravity determined by Cassini by consid-
ering its rapid (1.37 day) synchronous spin, McKinnon (2015)
suggests that the compensation depth (shell thickness) of Ence-
ladus’ global (degree 2) ice shell is �50 km and the compensation
depth (shell thickness) beneath the SPT is 30–40 km (cf., Iess et al.,
2014). The latter is consistent with our estimated brittle ice-shell
thickness of �30 km. Iess et al. (2014) show that the observed
gravity-to-topography ratios of Enceladus are consistent with an
elastic thickness of <0.5 km. Similar estimates of elastic-shell
thickness are also made by flexural analysis (Giese et al., 2008)
and relaxation studies (Bland et al., 2012) of crater morphology.
This is consistent with our estimate of �0.7 km for the SPT elastic
ice-shell thickness.

The models proposed in this work may be tested in two ways.
First, the predicted relationship between fault spacing and layer
thickness may be examined by analogue sandbox experiments.
Second, a more sophisticated numerical model with a more realis-
tic rheology involving viscous creeping of the warm ice, which may
host the root zones of the TSF, is needed to better model the three-
dimensional variation of stress state in the SPT. This is because the
initiation of a new fracture cutting across the SPT ice has to over-
come both the brittle and ductile strength of the whole ice shell.
Finally, the porosity of the ice shell should be considered in future
modeling, as its distribution may lead to a large spatial variation in
mechanical strength and density distribution of the ice shell (e.g.,
Lee et al., 2005), which were not considered in our simple model.
7. Conclusions

We present the first mechanical analysis on the formation of
evenly spaced strike-slip faults using realistic boundary conditions
and rheology for the ice shell of Enceladus. Two quantitative mod-
els based on the stress-shadow concept for explaining extensional
joint spacing are proposed in this study for explaining the
formation of the evenly spaced tiger-stripe fractures in the South
Polar Terrain of Enceladus: (1) an empirically based stress-rise-
function model that simulates the brittle-deformation process
during the formation of evenly spaced strike-slip faults, and (2) a
plate model that relates fault spacing to the elastic thickness of
the plate. When applying the models for the initiation and devel-
opment of the tiger-stripe fractures (TSF) in the South Polar Terrain
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(SPT) of Enceladus, the mutually consistent solutions of the two
models, as constrained by the mean spacing of the TSF at
�35 km, requires the brittle ice-shell thickness to be �30 km, the
elastic thickness to be �0.7 km, and the cohesive strength of
the ice shell to be �30 kPa for the South Polar Terrain that hosts
the tiger-stripe fractures. The consistency between the brittle
and elastic thicknesses of the SPT ice shell determined in this study
and those estimated by other independent methods supports the
plausibility of our proposed stress-shadow mechanism for the
formation of the tiger-stripe fractures on Enceladus.
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