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ABSTRACT

River incision results from interactions among tectonics, climate change, and surface processes, and yet the role of each process operating 
at different time scales remains poorly understood. In this study, we address this issue by reconstructing the late Quaternary spatiotem-
poral variation of aggradation and incision rates along the Lancang River (Upper Mekong River) in southeast Tibet. Our work combined 
field observations, topographic data analysis, and optically stimulated luminescence (OSL) and cosmogenic radionuclide (CRN) dating 
of geologically well-defined fluvial terrace deposits, and it reveals five levels of fluvial terraces with strath heights up to 200–240 m and 
a 300-km-wide knickzone along the Lancang River. The new data indicate that: (1) the Lancang River has experienced four aggradation 
events at >120–100 ka, 90–70 ka, 25–15 ka, and <9 ka, with each event followed by rapid incision at ca. 100 ka, ca. 45 ka, ca. 15 ka, and ca. 
6 ka; (2) river incision rates since the late Pleistocene decrease upstream across the knickzone from <2.8–2.3 and <2.1–1.7 to <0.5 mm/yr; 
and (3) they decrease with time at the knickzone from <2.1 mm/yr at ca. 100 ka to <1.1 mm/yr at 15–6 ka. The terrace-derived incision 
rates since the late Pleistocene from this study are more than an order of magnitude higher than the existing landscape-scale erosion 
rates derived from both thermochronological dating of bedrock bounding the river valley at million-year scales and cosmogenic nuclide 
concentrations of river sand at millennial scales. These findings imply decoupling of hydrologically induced river incision rates since the 
late Pleistocene from regional erosion rates on million-year and millennial time scales. Specifically, the hydrologically driven incision in a 
large fluvial system like the Lancang River in southeast Tibet, most likely related to local climate conditions, is much more efficient than 
tectonically driven erosion at a time scale of 100–10 k.y.
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INTRODUCTION

The closely spaced (~50 km apart) and parallel segments (~200 km 
long) of the Nu-Salween, Lancang-Mekong, and Jinsha-Yangtze Rivers are 
the most dominant drainage systems in southeast Tibet (Fig. 1; Brookfield, 
1998; Hallet and Molnar, 2001; Clark et al., 2006). These rivers carved 
up to 3000-m-deep valleys that are bounded by regions displaying relics 
of low-relief surfaces on top of the valley-bounding ranges (Clark et al., 
2006; Liu-Zeng et al., 2008). The geometry of the drainage basins is char-
acterized by an abnormally low width-length ratio of ~0.0074 (Gregory 
and Gregory, 1925; Hallet and Molnar, 2001). These first-order observa-
tions have been used to infer plateau-uplift mechanisms (e.g., Clark et 
al., 2006), surface processes during plateau construction (e.g., Liu-Zeng 
et al., 2008; Yang et al., 2015), and tectonic strain (e.g., Brookfield, 1998; 
Hallet and Molnar, 2001; Clark et al., 2006) and lower-crustal flow (Clark 
et al., 2004) during the Indo-Asian collision.

Although stimulating, these existing studies are mostly conceptual or 
based on inferences from numerical modeling. As a result, the roles of 

different competing processes operating at different time scales during the 
landscape evolution of a tectonically active region remain poorly quanti-
fied. Even when high-quality river incision data are locally available in 
southeast Tibet, they typically represent an averaged effect over either a 
specific duration of geologic time or a defined space. For example, low-
temperature thermochronometry has been used to quantify the bedrock 
exhumation rates over million-year time scales (Clark et al., 2005; Schoen-
bohm et al., 2006; Ouimet et al., 2010; Tian et al., 2014; Zhang et al., 2015; 
H.P. Zhang et al., 2016; Yang et al., 2016; Liu-Zeng et al., 2018), whereas 
in situ–produced cosmogenic 10Be concentrations of modern river sand 
provide basin-averaged denudation rates at a millennial time scale over 
the recent several thousand years (e.g., Henck et al., 2011). Although these 
approaches have provided important constraints on landscape evolution 
in southeast Tibet, there are very few direct measurements of incision 
rates using dated fluvial terraces in a single drainage basin from a river 
that cuts across the southeastern margin of Tibet.

In this study, we combined field observations, digital topographic anal-
ysis, and optical stimulated luminescence (OSL) and cosmogenic radionu-
clide (CRN) dating of multiple levels of fluvial terraces preserved along 
the Lancang River to quantify the late Quaternary spatial and temporal 
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Figure 1. (A) Topographic map of 
southeast Tibet based on 90-m-res-
olution Shuttle Radar Topography 
Mission (SRTM) digital elevation 
model, showing the distribution 
of major river systems, active 
faults, and historical earthquakes. 
The main rivers, i.e., Yarlung-
Brahmaputra, Nu-Salween, and 
Jinsha-Yangtze Rivers, are marked 
by white lines, whereas the Lan-
cang-Mekong River in this study 
is marked by blue lines, with the 
Yanjing-Weixi knickzone between 
Yanjing (YJ) and Weixi (WX) high-
lighted by the purple line. Yellow 
rectangles show three study 
reaches with fluvial terraces along 
the Lancang River, near Mangkang 
(MK), Deqin (DQ), and Yunlong (YL). 
Active faults are marked by red 
lines with arrows to indicate direc-
tion of horizontal motion of main 
strike-slip faults, based on the work 
by Tapponnier et al. (2001), Deng et 
al. (2003), and Taylor and Yin (2009). 
ANH F.—Anninghe fault; JL F.—Jiali 
fault; GZ F.—Ganzi fault; XSH F.—
Xianshuihe fault; XJ F.—Xiaojiang 
fault; RR F.—Red River fault; JSR 
F.—Jinsha River fault; LCR F.—Lan-
cang River fault; NR F.—Nu River 
fault; NTH F.—Nantinghe fault; 
SJF—Shijie fault. Historical earth-
quakes from 780 B.C. to 2008 are 
cited from China Earthquake Net-
works Center (http://www.ceic​
.ac.cn/history). Geographic names 
include: BT—Batang; ZD—Zhong-
dian; and WX—Weixi. Yellow star 
marks the location of the Xiao-
bailong Cave in southeast Tibet 
(XBL; Cai et al., 2015). (B) Spatial 
distribution of annually averaged 
precipitation across the Lancang 
drainage basin derived from Tropi-
cal Rainfall Measuring Mission 
(TRMM) data (adapted from http://
www​.geog​.ucsb​.edu​/~bodo​
/TRMM/) and normalized (refer-
ence concavity θref = 0.45) steepness 
indices, ksn, along the Lancang 
River determined by the integral 
method (Perron and Royden, 2013; 
Mudd et al., 2014). (C) Longitudi-
nal profile for the Lancang River 
(blue) and its drainage divide 
(cyan), TRMM-derived precipitation 
(black), normalized channel steep-
ness (green), and river discharge 
with drainage area weighted by 
TRMM data (purple). Black arrows 
point to geographic locations 
within the Lancang drainage area 
as shown in part A. The Yanjing-
Weixi knickzone is highlighted in 
purple with gray background, while 
the three reaches with fluvial terraces in this study are denoted by black rectangles. Right-lateral active faults intersecting with the Lancang River channel 
are also indicated as follows: BT F.—Batang fault; ZD F.—Zhongdian fault; WX F.—Weixi fault; and LCR F.—Lancang River fault; NTH F.—Nantinghe fault.
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variation of river incision rates in southeast Tibet. These terraces provide 
average incision rates of the main trunk valley of the Lancang River at 
time scales of 100–10 k.y. They thus fill the time gap between the million-
year time scale obtained by the thermochronological methods and the 
recent millennial time scale estimated from 10Be concentrations in stream 
sediments. Furthermore, the distribution of fluvial terraces and their spa-
tial variation in height above the river provide important information on 
the spatiotemporal patterns of river incision, which may help to discern 
between tectonic and climate processes controlling river incision (e.g., 
Burbank et al., 1996; Whipple, 2004; Whittaker, 2012).

The most important findings of this work include: (1) the average 
river incision rate since the late Pleistocene is more than an order of 
magnitude higher than the averaged erosion rates over million-year and 
millennial time scales as derived from thermochronological and cosmo-
genic 10Be concentrations methods, (2) the river incision rates since the 
late Pleistocene decrease upstream, and (3) the river incision rates within 
the knickzone decrease with time from the late Pleistocene to Holocene. 
These results suggest that the spatial pattern of climate conditions and 
hydrologic response with time may play an important role in modulat-
ing river incision rates at various space and time scales in a tectonically 
active region.

REGIONAL GEOLOGIC AND CLIMATIC SETTINGS

The >2000-km-long Lancang River descends ~4000 m in elevation 
from southeast Tibet to the lower segment of the Mekong River that enters 
the South China Sea (Fig. 1). Near Deqin (Fig. 1C), the regional topogra-
phy transitions from a low-relief region in the northwest to a more rugged 
region farther southeast, and the average elevation decreases from >5000 
m to ~2000 m over a distance of ~1000 km. Within this transition zone, 
the longitudinal profile of the Lancang River exhibits an ~300-km-long 
knickzone between Yanjing and Weixi, hereafter referred to the Yanjing-
Weixi knickzone (Fig. 1C). Across the knickzone, the river decreases 
in elevation downstream from ~2400 m to ~1700 m, whereas the nor-
malized (reference concavity θ

ref
 = 0.45) channel steepness indices (k

sn
), 

determined by the integral method (Perron and Royden, 2013; Mudd et 
al., 2014), decrease from 270 to 140 m0.9 (Figs. 1B and 1C).

The Lancang drainage basin is situated in the Qiangtang terrane in the 
north and the Lanping-Simao terrane in the south (Pan et al., 2004; Burch-
fiel and Chen, 2012). Above the Yanjing-Weixi knickzone, the Lancang 
River mainly flows across Mesozoic sedimentary rocks of the Qiangtang 
terrane, especially the Middle Triassic strata containing felsic and interme-
diate volcanic rocks at latitudes of 30°N–29°N. At the knickzone, the river 
flows dominantly within Paleozoic sedimentary rocks of the Qiangtang 
terrane. Downstream from the knickzone, the river flows across Meso-
zoic sedimentary rocks, including Late Triassic mafic volcanic rocks of 
the Lanping-Simao terrane. South of Yunlong, the river cuts across the 
Chongshan mylonitic shear zone.

The Lancang drainage basin is cut by the active right-lateral Jinsha 
River, Red River, and Lancang River fault zones, and a left-lateral fault 
system near 24°N (Fig. 1A; Tapponnier et al., 2001; Deng et al., 2003; 
Taylor and Yin, 2009). The Lancang River fault zone trends mostly sub-
parallel to the main trunk of the Lancang River between 25°N and 31°N, 
but it cuts across the river at several locations. South of Yunlong (Fig. 
1A), where the Lancang River fault zone intersects the Lancang River, 
the hairpin-shaped river-trunk geometry and the displaced tributaries on 
the east side of the river indicate right-lateral strike-slip motion with a 
west-side-down normal-fault component. The NNE-striking Batang fault, 
the NW-striking Zhongdian fault, the NW-striking Weixi fault, and the 
NWW-striking Nantinghe fault intersect the Lancang River obliquely, 

with the latter two structures dipping to the north (Figs. 1A and 1C). The 
Yanjing-Weixi knickzone along the Lancang River is situated between 
the right-lateral Batang and Weixi faults (Figs. 1A and 1C). Thus, the 
formation of the knickzone may have been related to transpression due 
to motion along the two faults. Alternatively, the knickzone may have 
been generated by differential vertical motion across the Lancang River 
fault zone.

Two climate systems dominate our study area at present: the mid
latitude westerlies and the Indian monsoon. In this region, the wet summer 
monsoon season lasts for 4 months from June to September, and the resul-
tant discharge transports 86% of the suspended sediment load (Henck et 
al., 2010). Subparallel ridges and valleys in southeast Tibet exert a strong 
topographic control on the spatial distribution of precipitation. The north-
trending valleys act as conduits to transmit moisture upstream, whereas the 
intervening ridges act as barriers that block transport of moisture eastward. 
Along the Lancang River, mean annual precipitation derived from Tropical 
Rainfall Measuring Mission (TRMM) data decreases upstream from 2000 
to 340 mm/yr, with a sharp drop near the plateau topographic transition 
zone near Deqin (Fig. 1). The Lancang drainage basin also encompasses 
the southeastern edge of active glacial areas in southeast Tibet.

METHODS

Fluvial terraces perched above the active channel of the Lancang River 
were first mapped using Google EarthTM images. In the field, we measured 
the heights of terrace treads and bedrock straths using a laser rangefinder 
and established the terrace stratigraphy and its lateral correlative relation-
ships. This field-based geological framework allowed us to collect mean-
ingful OSL and CRN samples, with which we determined the timing of 
key geologic events related to river evolution.

OSL Dating

We obtained burial ages of terrace sediments using the quartz OSL 
method. Samples were collected from fine-grained sand to silt lenses 
embedded in terrace deposits as close to the bedrock surfaces as possible. 
By doing so, the obtained dates offer a minimum age of strath-surface 
formation. Both the accuracy and precision of OSL dating depend on 
how completely quartz grains are bleached prior to deposition, which is 
controlled by the intensity and duration of exposure to daylight during 
sediment transport (e.g., Rhodes, 2011). The origin and geologic history 
of the quartz grains are also important: Grains recently eroded from bed-
rock are much more difficult to bleach than those that have experienced 
multiple cycles of deposition and reworking at the surface (Rhodes, 2011; 
J.Y. Zhang et al., 2016). Considering the fluvial origin of the samples along 
the mostly turbulent Lancang River, we expect the possibility of partially 
bleached grains, which would result in an overestimation of depositional 
ages of terrace sediments (i.e., the actual ages of terrace sedimentation 
could be younger; Rodnight et al., 2006).

All OSL samples were collected in stainless-steel tubes with ~5 cm 
inner diameter and ~25 cm length. After sampling, both ends of the tubes 
were immediately sealed with aluminum foil and wrapped with opaque 
tape to limit exposure to sunlight. In addition, the ~5 cm outer sediments 
near the ends of the tube were removed in the laboratory before mineral 
separation. The samples were prepared to extract purified quartz fol-
lowing conventional techniques (Aitken, 1998). OSL age determination 
was performed at the Luminescence Dating Laboratory of the Institute 
of Geology, China Earthquake Administration. The sensitivity-corrected 
multiple-aliquot regenerative-dose protocol (SMAR) was applied for most 
of our samples to yield one value of equivalent dose (De) for each sample 
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(Wang et al., 2005; Lu et al., 2007). This protocol uses multiple aliquots 
of fine-grained quartz grains (4–11 μm) to build the growth curve, and it 
corrects the sensitivity changes with a test dose to each aliquot. Compared 
with the single-aliquot regenerative-dose protocol (SAR), the advantage of 
this protocol lies in avoiding high levels of OSL recuperation for samples 
with De >120 Gy (up to 8%) and the resultant age underestimation (Wang 
et al., 2005; Lu et al., 2007). However, this protocol does not allow the 
degree of bleaching to be evaluated with multiple De values by either 
radial plots or probability histograms (Thrasher et al., 2009; Rhodes, 
2011). For equivalent dose <120 Gy, the SAR protocol was further applied 
to coarser-grained quartz grains of 90–125 μm size to identify grains that 
were completely bleached and that would yield a more reliable OSL age 
(Murray and Wintle, 2003).

Cosmogenic Nuclide (10Be) Dating

In situ–produced cosmogenic 10Be in quartz dates the exposure ages 
of terrace surfaces to cosmic rays (e.g., Lal, 1991; Gosse and Phillips, 
2001; Dunai, 2010). These exposure ages are typically interpreted to 
indicate the time when rivers incised and abandoned a terrace tread 
(e.g., Anderson et al., 1996; Repka et al., 1997; von Blanckenburg and 
Willenbring, 2014). However, individual clasts exposed on terrace treads 
likely experienced a protracted history of exhumation, transport, and 
transient burial and are therefore likely to start with different nuclide 
concentrations at the time of exposure. We amalgamated at least 30 
individual pebbles of 1–3 cm size to average the inheritance of cosmo-
genic nuclides and obtain an upper limit for the time of terrace abandon-
ment (Repka et al., 1997). To avoid local sources, we collected rounded 
pebbles, indicative of substantial transport distance, far from adjoining 

hillslopes. In addition, we amalgamated 3–5-cm-thick rock chips from 
the top of five to seven large (i.e., >1 m wide and tall) and presumably 
stable boulders that were imbedded within the terrace tread. As boulders 
of this size likely originate from landslides, they probably have only very 
little inheritance in 10Be concentrations. Furthermore, postdepositional 
erosion of the boulders tends to make the exposure ages younger, and we 
would expect that the amalgamated boulder samples would be younger 
than the amalgamated pebble samples. Both kinds of samples were col-
lected from areas as flat as possible, without any apparent anthropogenic 
modification and away from the edges of the terrace surfaces to minimize 
postdepositional erosion.

Separation and purification of quartz grains and chemical extraction of 
beryllium were done following the revised method of von Blanckenburg et 
al. (2004) at the Helmholtz Laboratory for the Geochemistry of the Earth 
Surface (HELGES) at the GFZ German Research Center for Geosciences. 
Subsequent isotope measurements for cosmogenic 10Be were conducted 
at the accelerator mass spectrometer facility at the University of Cologne 
in Germany (Dewald et al., 2013). Table 1B lists the analytical sample 
results and the associated 1σ uncertainties, based on the propagated uncer-
tainties in the carrier concentration, one process blank, and the isotope 
measurements. We calculated exposure ages from 10Be concentrations 
using the CRONUS-Earth online calculator v. 2.3 (Balco et al., 2008). 
The exposure ages reported here are based on the time-dependent ver-
sion of the Lal (1991)/Stone (2000) production scaling model (“Lm” in 
Balco et al., 2008). Our samples were collected from high-relief valleys, 
and we thus corrected for topographic shielding using 90-m-resolution 
Shuttle Radar Topography Mission (SRTM) data and following Dunne 
et al. (1999). Shielding by snow or vegetation is negligible for the CRN 
samples collected in our study.

TABLE 1A. OPTICALLY STIMULATED LUMINESCENCE (OSL) DATING RESULTS FOR TERRACE DEPOSITS ALONG THREE REACHES OF THE LANCANG RIVER

Sample 
no.

Lab code Latitude
(°N )

Longitude
(°E)

Elevation
(m)

Burial 
depth 
(m)

Method U-238
(Bg/kg)

Ra-226
(Bg/kg)

Th-232
(Bg/kg)

K-40
(Bg/kg)

Water 
content

(%)

Dose rate
(Gy/k.y.)

De
(Gy)

Age
(ka)

±

Mangkang reach

MK14-01 LEDL15-73 29.96517 98.06708 2929 1 SMAR 36.0 ± 4.2 39.2 ± 0.4 56.7 ± 0.5 772.6 ± 12.3 3 4.3 ± 0.3 259.0 ± 20.0 59.9 4.9
MK14-02 LEDL14-388 29.96882 98.06416 2923 1.5 SMAR 32.7 ± 3.7 31.4 ± 0.3 47.1 ± 0.5 615.3 ± 9.9 2 3.5 ± 0.4 305.8 ± 19.8 88.7 6.2

Deqin reach

YJ15-01 LEDL16-216 29.021614 98.604222 2425 5 SMAR 28.3 ± 5.9 25.8 ± 0.4 42.4 ± 0.5 580.8 ± 9.9 1 3.1 ± 0.3 274.8 ± 17.1 89.1 6.0
YJ15-02 LEDL16-217 28.980767 98.631133 2465 5 SMAR 24.5 ± 5.3 22.9 ± 0.4 33.5 ± 0.4 385.6 ± 7.1 0 2.4 ± 0.2 236.6 ± 34.2 100.2 14.7
DQ14-02 LEDL15-71 28.45559 98.830684 2201 13.2 SMAR 31.8 ± 4.0 33.1 ± 0.4 57.6 ± 0.5 620.9 ± 10.1 9 3.3 ± 0.3 295.4 ± 19.3 89.1 6.3
XD15-01 LEDL16-211 28.452525 98.834383 2082 1.2 SMAR 32.7 ± 5.4 26.7 ± 0.4 34.1 ± 0.4 437.1 ± 7.7 1 2.7 ± 0.2 42.5 ± 1.7 15.6 0.7
DQ14-03 LEDL14-390 28.371722 98.863389 2029 9.8 SAR 29.1 ± 6.1 27.3 ± 4.8 39.5 ± 0.6 504.4 ± 8.3 7 2.3 ± 0.2 20.3 ± 0.4 9.0 0.3
YL15-01 LEDL16-215 28.298264 98.865439 2167 2.5 SMAR 38.3 ± 5.8 23.4 ± 0.4 35.7 ± 0.4 441.8 ± 8.0 0 2.7 ± 0.2 316.0 ± 34.2 116.6 13.0
DQ14-05 LEDL15-72 28.283333 98.8625 2059 2 SMAR 31.9 ± 3.7 32.5 ± 0.4 45.5 ± 0.4 579.8 ± 9.4 3 3.3 ± 0.3 280.6 ± 14.6 86.0 5.0
DQ14-04 LEDL14-391 28.290972 98.859972 2048 11.6 SAR 36.1 ± 3.6 34.5 ± 0.4 50.4 ± 0.5 641.9 ± 10.2 6 2.9 ± 0.2 112.4 ± 8.4 38.6 3.0

Yunlong reach

TE15-07 LEDL16-213 26.164797 99.126038 1728 3 SMAR 37.5 ± 6.3 35.8 ± 0.5 46.6 ± 0.5 628.0 ± 10.6 3 3.5 ± 0.3 355.1 ± 15.3 100.4 5.1
TE15-08 LEDL16-214 26.16315 99.132186 1556 3 SMAR 37.4 ± 6.2 26.8 ± 0.5 43.9 ± 0.5 580.7 ± 10.0 0 3.3 ± 0.3 233.0 ± 21.3 71 6.7

Note: SMAR—sensitivity-corrected multiple-aliquot regenerative dose protocol for fine-grained quartz grains; SAR—single-aliquot regenerative dose protocol for fine-
grained quartz grains; De—equivalent dose for the sample estimated in the laboratory.

TABLE 1B. COSMOGENIC RADIONUCLIDE (CRN) EXPOSURE DATING RESULTS FOR FLUVIAL TERRACES AT  
DEQIN REACH WITHIN THE YANJING-WEIXI KNICKZONE OF THE LANCANG RIVER

Sample no. Latitude
(°N )

Longitude
(°E )

Elevation
(m)

Location Sample type Shielding
correction

10Be concentration
(atoms/g)

± Exposure
age (ka)

±

15-8-30-(1) 28.8079 98.6559 2335 Adong Pebbles 0.940853 9.604E+05 3.131E+04 56.8 5.9
15-8-30-(2) 28.8079 98.6559 2335 Adong Quartz vein 0.940853 8.032E+05 2.638E+04 46.1 4.7
15-6-2-(1) 28.4519 98.8293 2244 Xidang Pebbles 0.977093 7.883E+05 2.593E+04 46.4 4.8
15-6-2-(5) 28.4487 98.8322 2102 Xidang Pebbles 0.9572 2.339E+05 7.986E+03 17.1 1.7
15-6-3-(2) 28.3605 98.8672 2022 Junda Boulder fragments 0.929468 7.335E+04 3.064E+03 5.96 6.1
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River Incision Rates Derived from Fluvial Terraces

The strath surfaces of fluvial terraces along the Lancang River are 
overlain by alluvial deposits with a thickness 0.5–2 times the strath height 
above the current river. This indicates that river incision is far from a 
monotonous downcutting process, with possibly several successive epi-
sodes of strath abrasion, fill deposition, re-incision, and downcutting into 
the bedrock. Due to lateral migration associated with river aggradation or 
blockage events, a river channel may not systematically reoccupy an early 
course. Instead, it may erode the walls or shoulders of the former valley 
(Lavé and Avouac, 2001; Ouimet et al., 2007), and thus possibly create a 
strath surface that does not correspond to the bedrock floor of the former 
channel. Hence, the boundary between bedrock strath and its overlying 
alluvial deposits is likely to yield an upper limit on river incision into the 
bedrock. To minimize this uncertainty, we always measured the lowest 
strath exposed at a field site. Because of the unknown depth to the bedrock 
below the modern river surface and the thickness of the sediment cover, 
we used the modern river elevation as our reference level, which yields a 
minimum estimate for the amount of river incision. Compared with the 
10Be exposure dating of the topmost terrace deposits, which yields the time 
of incision (if erosion is zero), the OSL burial ages of the stratigraphically 
lowest alluvium directly above the strath surfaces should offer a lower 
age limit of the corresponding strath-carving event (Lavé and Avouac, 
2001; Wegmann and Pazzaglia, 2009). In addition, most terrace deposits 
along the Lancang River in this study are thicker than the scour depth 
of the channel, which scales with the upstream drainage area (Pazzaglia, 
2013), and we therefore interpret these sediments to have been deposited 
during some time period after strath cutting, which is difficult to evaluate 
more exactly (e.g., Lavé and Avouac, 2001; Scherler et al., 2014). With 
these limitations in mind, we calculated fluvial incision rates (I) along 
the river using I = H

S
/T

S
, where H

S
 is the elevation of strath surfaces (m), 

and T
S
 is the estimated age (ka) of strath formation (e.g., Lambeck et al., 

2004; Wegmann and Pazzaglia, 2009). The uncertainty of the incision 
rate is σ

I
2 = (σ

Hs
/T

S
)2 + (H

S
/T

S
2)2σ

Ts
2, where σ

Hs
 is the uncertainty in the 

height of strath surfaces (m) above the modern river, and σ
Ts

 is the OSL 

uncertainty (ka). Table 2 summarizes the calculated incision rates together 
with the ages and heights of strath surfaces obtained in this study.

RESULTS

Fluvial Terraces

We studied fluvial terraces with strath surfaces that lie at 220–250 m, 
140–170 m, 100–120 m, 35–60 m, and 10–20 m, respectively, above the 
Lancang River. The strath surfaces are overlain by alluvial deposits from 
2 m to >100 m thick. In this study, we focused on the terraces located 
at Mangkang, Deqin, and Yunlong, which are above, at, and below the 
Yanjing-Weixi knickzone (Fig. 1).

Mangkang Reach
There are three levels of strath surfaces at the Mangkang reach at 

220–240 m, 100–140 m, and 35–60 m above the present Lancang River 
(Figs. 2 and 3). A prominent subhorizontal terrace surface is 130–180 m 
above the river (Fig. 3B). The associated strath surface at 35–60 m is 
overlain by fluvial gravels, grading upward from boulders and cobbles at 
the base to pebbles and overbank deposits of silt and clay (Figs. 3C and 
3D). Our two OSL ages from the top of the terrace deposits indicate that 
a river aggradation event occurred at >90–60 ka (Table 1A; Fig. 2A). In 
addition, a strath terrace is exposed at the height of ~220–240 m above 
the river, and it is capped by ~15-m-thick fluvial boulders, pebbles, and 
coarse- to medium-grained sand lenses (Fig. 3E).

Deqin Reach
We identified four levels of bedrock strath at 210–250 m, 140–190 m, 

90–110 m, and 10–20 m along the Deqin reach, each capped by allu-
vial deposits (Figs. 2 and 4). A prominent strath surface at a height of 
140–190 m above the river can be traced for ~80 km between Yanjing 
and Xidang along the main trunk (Figs. 4B–4E). The overlying terrace 
deposits consist of boulders, pebbles, and sand beds, locally overlain by 
colluvial and tributary fan deposits, and have thicknesses varying from 

TABLE 2. SUMMARY OF OPTICALLY STIMULATED LUMINESCENCE (OSL) AND COSMOGENIC RADIONUCLIDE (CRN) 
DATING RESULTS FOR TERRACE DEPOSITS, HEIGHTS OF BEDROCK STRATH, AND RIVER INCISION RATES FOR 

FLUVIAL TERRACES ALONG THREE REACHES OF THE LANCANG RIVER
Location Sample no. Ages of terrace deposits (ka) Height of  strath (m) River incision rate (mm/yr) Dating method

Mangkang reach

Mangkang MK14-02 88.7 6.2 45 10 0.51 0.18 OSL
MK14-01 59.9 4.9 OSL

Deqin reach

Yanjing YJ15-01 89.1 6 177 15 1.99 0.17 OSL
YJ15-02 100.2 14.7 168 15 1.68 0.17 OSL

Adong 8-30-1 56.8 5.9 177 15 CRN
8-30-2 46.1 4.7 CRN

Xidang DQ14-02 89.1 6.3 155 15 1.74 0.17 OSL
15-6-2-(1) 46.4 4.8 CRN
XD15-01 15.6 0.7 16 2 1.03 0.14 OSL
15-6-2-(5) 17.1 1.7 CRN

Junda DQ14-03 9.0 0.3 10 1 1.11 0.12 OSL
15-6-3-(2) 6.0 0.6 CRN

Yunling YL15-01 116.6 13 243 20 2.08 0.18 OSL
DQ14-05 86 5 104 10 1.21 0.13 OSL
DQ14-04 38.6 3 OSL

Yunlong reach

Yunlong TE15-07 100.4 5.1 284 20 2.83 0.20 OSL
TE15-08 71 6.7 166 15 2.34 0.22 OSL

Note: Bold indicates the selected ages of terrace deposits, height of strath, and river incision rates.
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Figure 2. Simplified cross sections for various levels of fluvial terraces along the Lancang River: (A) Mangkang reach; (B–E) Deqin reach, 
including the Yanjing and Adong, Xidang, Junda, and Yunling sites; and (F) Yunlong reach. The locations and age results of optically 
stimulated luminescence (OSL) and cosmogenic radionuclide (CRN) samples are also shown by green and cyan stars, correspondingly.
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10 m to 100 m. OSL dating of fine-grained sand layers close to the bed-
rock strath between Yanjing and Xidang revealed a regional aggradation 
event initiating before ca. 90 ka (Table 1A; Figs. 2B, 4C, and 4E). Three 
samples from terrace surfaces with bedrock straths at 140–190 m yielded 
CRN exposure ages of ca. 57–46 ka (Table 1B; Figs. 2B, 4D, and 4E), 
consistent with the OSL ages.

The highest terrace at Yunling has a bedrock strath at 210–250 m 
above the Lancang River that is capped by ~70-m-thick tributary fan 
conglomerates, and locally by fluvial gravels and thickly bedded fine-
grained sand (Fig. 4F). OSL dating of a sand layer near the top of the 
terrace deposits indicates that this aggradation was under way at ca. 120 
ka (Table 1A; Figs. 2D, 4F, and 4G). A lower strath surface lies at 90–110 
m above the river, and it is overlain by 30–60-m-thick colluvium and 
tributary fluvial deposits. Two OSL ages from sand layers in the fluvial 
deposits reveal that aggradation started prior to 90 ka and ended no later 
than 40 ka (Table 1A; Figs. 2D and 4F). At Xidang, the lowest strath 
surface at 15–20 m is covered by a thick sequence of fluvial conglom-
erates, grading upward from boulders and cobbles to pebbles that are 
capped by overbank sand deposits (Fig. 4E). OSL dating of a sand layer 
near the terrace surface indicates that the transition from aggradation to 
incision occurred around 15 ka, compatible with CRN exposure dating 
of the terrace surface (Table 1; Figs. 2B and 4E). At Junda, the lowest 
strath surface lies at 8–10 m above the Lancang River, and it is capped 

by 25-m-thick fluvial, boulder-to-cobble conglomerate with occasional 
sand lenses (Figs. 4H and 4I). The OSL age from a sand layer close to 
the bedrock strath indicates that river aggradation was under way at 9 
ka, in agreement with a CRN exposure age of the terrace surface of 6 ka 
(Table 1; Figs. 2C, 4H, and 4I).

Yunlong Reach
The Yunlong reach below the Yanjing-Weixi knickzone features four 

levels of river terraces: two higher terraces with bedrock strath heights 
of 284 m and 150–170 m above the river, and two lower fill terraces with 
terrace surfaces at heights of 53 m and 21 m above the Lancang River 
(Figs. 2 and 5). At Songdeng, the 284 m strath is capped by boulder-to-
cobble conglomerate and medium- to fine-grained sand and silt, whereas 
the 166 m strath is capped by well-rounded and well-sorted gravels of 
cobble to pebble size and medium- to fine-grained sand (Figs. 5B–5D). 
Both terrace treads and strath surfaces dip gently toward the Lancang 
River valley, indicating a high ratio of lateral planation to vertical incision 
during strath formation (e.g., Hancock and Anderson, 2002; Finnegan and 
Dietrich, 2011). OSL dating of sand deposits indicated that the correspond-
ing aggradation events were under way at 100 ka and 70 ka (Table 1A; 
Figs. 2E, 5B, and 5D). Downstream at Songping, the bedrock strath is 
found at 158 m above the nearby river, overlain by reddish clay with 
angular gravels (Fig. 5E).
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Figure 3. (A) Google EarthTM image 
showing the distribution of flu-
vial terraces for ~20 km along 
the Mangkang reach. Black rect-
angle shows the location of B. 
(B) Google Earth™ image at Beiba 
showing the prominent terrace 
tread at 130–180 m above the Lan-
cang River, and bedrock straths at 
100–140 m and 35–60 m, as marked 
by yellow arrow and black num-
bers. The locations of optically 
stimulated luminescence (OSL) 
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Field picture showing the promi-
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lected, close to the Lancang River. 
(D) Field picture showing the verti-
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River Incision Rates

Our OSL and CRN exposure dating reveals four aggradation events 
at >120–100 ka, ca. 90–70 ka, ca. 25–15 ka, and <9 ka, each followed 
by incision that started no earlier than 100 ka, 45 ka, 15 ka, and 6 ka, 
respectively (Figs. 2 and 6). The incision rates related to each incision 
period are summarized in Table 2, and the procedures for obtaining them 
are described below.

Along the Mangkang reach, the river incision rate since <60 ka is <0.5 
mm/yr (Fig. 6A). The highest strath level along the Deqin reach is 243 ± 20 
m, and the upper limit of the incision rate since 100 ka is 2.1 mm/yr (Fig. 
6D). The prominent bedrock strath at 140–190 m is overlain by terrace 
alluvium deposited at 90–70 ka, which yields an incision rate <1.7 mm/yr 
(Figs. 6B and 6C). The lower strath surface at 104 ± 10 m yields an upper 
limit for the incision rate prior to 40 ka of 1.2 mm/yr (Fig. 6D). For the 
lowest strath levels at 10–20 m above the river, the river incision rates since 
ca. 9 ka and ca. 15 ka are both <1.1 mm/yr (Figs. 6C and 6D). Along the 
Yunlong reach, the river incision rates are <2.8 mm/yr and <2.3 mm/yr for 
two higher strath terraces since 100 ka and 70 ka, respectively (Fig. 6E).

In summary, the rates of river incision since the late Pleistocene along 
the Lancang River have decelerated upstream (Figs. 6 and 7). Incision rates 
averaged over ~100 k.y. decrease from <2.8 mm/yr below the knickzone to 
<2.1 mm/yr at the knickzone. Incision rates averaged over the last ~45 k.y. 
decrease upstream from <2.3 mm/yr below the knickzone to <1.7 mm/yr at 

the knickzone and to <0.5 mm/yr above the knickzone. In addition, incision 
rates at the knickzone appear to decrease temporally from <1.7–2.1 mm/yr 
since the late Pleistocene to <1.1 mm/yr since the Holocene.

DISCUSSION

Our work reveals the following spatiotemporal pattern of river incision 
along the Lancang River (Figs. 6 and 7): (1) river aggradation occurred 
at >120–100 ka, ca. 90–70 ka, ca. 25–15 ka, and <9 ka, followed by 
river incision starting at ca. 100 ka, ca. 45 ka, ca. 15 ka, and ca. 6 ka, 
respectively; (2) the incision rates since the late Pleistocene vary between 
<0.5 mm/yr and 2.8 mm/yr; (3) the incision rates since the late Pleistocene 
decrease upstream; and (4) the incision rates at the knickzone decreased 
from ca. 100 ka to ca. 10 ka. Next, we first evaluate the uncertainties in 
our terraced-derived river incision rates. This allows us to quantitatively 
compare our results against the regionally averaged erosion rates estimated 
by thermochronological dating and cosmogenic nuclide concentrations. 
Potential factors controlling the competing erosional processes at differ-
ent temporal and spatial scales are discussed.

Uncertainties in the Estimated River Incision Rates

Systematic overestimation of river incision rates can occur if the dated 
terrace sediments were deposited significantly later than strath formation. 
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Wide valleys tend to store thick sequences of alluvial sediments that pro-
tect the underlying bedrock strath from subsequent episodes of incision. 
In addition, poor exposure of terrace sediment sequences due to dense 
vegetation and farming activities may lead to preferred OSL dating of 
fine-grained overbank deposits, which could make the resulting age esti-
mates younger than the timing of deposition of the first, coarser-grained 
sediments after beveling the bedrock strath. Potential overestimation of 
the strath height above the river may be introduced due to the uneven 
strath-alluvium contact, such as gently dipping bedrock straths in wide 
river channels. It is difficult to confidently exclude or quantify such uncer-
tainties in the age estimates of strath formation and in the height estimates 
of the strath surfaces. Among the three river reaches that we investigated, 
the narrow Lancang River channel within the knickzone probably suf-
fers less from these uncertainties compared to the wider Yunlong reach 
below the knickzone. Hence, a lower bound of strath height for the lower 

terrace at Yunlong is estimated to be 130 ± 20 m, which was obtained by 
projecting the gently dipping bedrock strath to the present-day position 
of the Lancang River. Together with the older burial age of the higher 
terrace (100.4 ± 5.1 ka), this would yield a minimum incision rate of ~1.3 
mm/yr below the knickzone, which decreases to more than one half of 
the uncorrected value of <2.3 mm/yr and is slightly lower than that at the 
knickzone (Figs. 2 and 7).

Erosion Rates at Different Time Scales in Southeast Tibet

The incision rates calculated from fluvial terraces along the Lancang 
River in this study vary between 0.5 and 2.8 mm/yr since the late Pleisto-
cene. The exact rate depends strongly on the ages of strath development 
as constrained by our dating of the overlying terrace deposits. Even in the 
presence of unquantified uncertainties, these values are significantly higher 
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than landscape-scale erosion rates estimated from low-temperature ther-
mochronometry and cosmogenic 10Be concentrations in river sediments 
(Fig. 7). Apatite (U-Th)/He dating of bedrock samples from ridge tops 
yields average erosion rates since the late Miocene of ~0.1–0.3 mm/yr 
(Liu-Zeng et al., 2018), whereas samples from near the valley bottom of 
the Lancang River yield erosion rates since the late Miocene of ~0.4–1.0 
mm/yr (Yang et al., 2016). These rates are similar to millennial-scale 
catchment-averaged denudation rates of ~0.2–0.6 mm/yr, which are based 
on 10Be concentrations in modern river sand sampled from either the main 
stem or from tributaries along the Lancang River (Henck et al., 2011).

The different erosion rates estimated using three different methods 
from samples collected at different locations may reflect erosion processes 
that operate at different temporal and spatial scales. For example, the 
response of hillslopes could lag behind a recently accelerated trunk river 
incision event. In this context, our faster river incision rates compared to 
the million-year time scale exhumation rates may indicate that the trunk 
of the Lancang River incised faster than the surrounding hillslopes. This 
interpretation is compatible with 10Be-derived denudation rates of the 
Lancang River at 1–10 k.y. time scales that are lower than our trunk-
river incision rates (Henck et al., 2011), because the former are spatially 
weighted values over the very large drainage area of the Lancang River, 
where the upland has relatively lower erosion rates than the valley bottom 
(Henck et al., 2011; McPhillips et al., 2016).

Another possible explanation for the difference between the long (>1 
m.y.) and short (<100 k.y.) time scale erosion rates in southeast Tibet is 
the nonsteady process of river incision into bedrock, in that periods of 

incision are punctuated by episodic incision hiatuses (e.g., Gardner et al., 
1987; Mills, 2000; Finnegan et al., 2014). The terrace-derived incision 
rates in this study cover time scales of 104–105 yr, whereas erosion rates 
from thermochronology are averaged over 106 yr. Finnegan et al. (2014) 
have shown that estimated fluvial incision rates will be larger, due to the 
shorter measurement interval, if hiatuses in river incision have a heavy-
tailed length distribution (cf. Ganti et al., 2016). Our dating results suggest 
that episodes of river aggradation above bedrock strath surfaces persisted 
for >104 yr (Fig. 6), but we cannot judge whether hiatuses in river incision 
truly follow a heavy-tailed distribution. In any case, in contrast to what 
would be expected for a heavy-tailed distribution, we observe the oppo-
site: a decrease in the incision rate with decreasing measurement interval. 
In other words, if the hiatus distribution were heavy-tailed, the actual 
increase in incision rate with decreasing time scale would be even greater.

Our observations also suggest that hiatuses in river incision into bed-
rock are not coupled in a simple way to periodic glacial-interglacial cli-
matic cycles, as documented elsewhere (e.g., Gardner et al., 1987; Mills, 
2000; Finnegan et al., 2014). Alternating transient pulses of river aggra-
dation and incision have been documented at several locations along the 
margins of the Tibetan Plateau, with the transition occurring at ca. 140 
ka, ca. 96–106 ka, 53–40 ka, 18.6–15.3 ka, ca. 9 ka, ca. 5.2 ka, and 3.6 ka 
(Harkins et al., 2007; Dey et al., 2016). These times are often coincident 
with those revealed in this study along the Lancang River in southeast 
Tibet and may point to regional causes such as shifts in monsoon strength, 
perhaps coupled to glacial cycles (e.g., Srivastava et al., 2008; Scherler 
et al., 2015).

Overall, it is striking that deeply entrenched bedrock rivers in south-
east Tibet still preserve coherent strath terraces up to 150 m high above 
the modern river that are older than 90 ka. The terraces demonstrate that 
the Lancang River has experienced intermittent incision, i.e., phases of 
rapid incision, separated by long periods of quiescence or aggradation. 
Processes such as climatic shifts, landslides, or tectonic or glacial pond-
ing (e.g., Kong et al., 2009; Wang et al., 2014; Scherler et al., 2014, 
2016) can lead to long periods of aggradation that are followed by river 
lateral abrasion and formation of terraces, which are abandoned during 
subsequent periods of fast incision. We are inclined to believe that along 
the Lancang River, complex relationships among tectonic uplift, climate, 
and surface processes may control the nonsteady bedrock river incision 
(Burbank et al., 1996; Whipple, 2001; Whittaker et al., 2007; Finnegan 
et al., 2014; Gallen et al., 2015).

Spatiotemporal Variations in River Incision Rates

River aggradation along the Lancang River occurred at >120–100 ka, 
ca. 90–70 ka, ca. 25–15 ka, and <9 ka, each followed by incision periods 
that started at ca. 100 ka, ca. 45 ka, ca. 15 ka, and ca. 6 ka, respectively 
(Fig. 6). A notable feature in this history is that after 100 m of aggra-
dation at 90–70 ka, there has been >150 m of incision since ca. 45 ka. 
The stalagmite oxygen-isotope records in southeast Tibet (Xiaobailong 
[XBL] Cave in Fig. 1A) reflect the variability in the Indian summer mon-
soon precipitation, which varies on orbital time scales (Fig. 8B; Cai et 
al., 2015). Furthermore, moraine ages in southeast Tibet are clustered at 
105 ± 10 ka, 50 ± 10 ka, and 15 ± 5 ka, indicating that glaciers advanced 
during marine isotope stages (MIS) 5C, 3, and 2/1 (Fu et al., 2013, and 
reference therein), at times when the climate was cold but also wet enough 
(Fig. 8C). Periods of river incision from this study occurred both during 
cold, glacial periods as well as during warmer and wetter interglacial 
periods (e.g., Bridgland and Westaway, 2008). It is worth noting, however, 
that our reconstructed periods of river aggradation and incision may be 
incomplete due to limited dating opportunities along the Lancang River. In 
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summary, it is presently difficult to assign clear cause-and-effect relation-
ships to periods of river aggradation and incision in southeast Tibet, but 
there appears to be a tendency for prolonged periods of aggradation during 
glacial periods, punctuated by periods of incision, when strong monsoon 
precipitation increases river discharge (e.g., Scherler et al., 2015). The 
actual timing of individual aggradation and incision periods may result 
from the complex hydrologic response to climate changes and other fac-
tors that influence sediment storage and transport (e.g., Pederson et al., 
2006; Pazzaglia, 2013).

Our work resolves the spatial pattern of river incision along the Lan-
cang River since the late Pleistocene. The spatial pattern for the Holo-
cene incision is not resolved, however. River incision rates since the late 
Pleistocene decrease between 26°N and 30°N, from <2.3 mm/yr below 
the knickzone, to <1.7 mm/yr at the knickzone, and to <0.5 mm/yr above 

the knickzone (Fig. 7). This pattern of upstream-decreasing incision rates 
is different from that of other proxies of erosion at either shorter or lon-
ger time scales. However, the river incision rate at the knickzone since 
the Holocene is <1.1 mm/yr, which is similar to other proxies of erosion. 
Other proxies of erosion include river steepness, detrital 10Be concen-
trations, and low-temperature thermochronological data, and all yield 
the maximum values within the knickzone (Fig. 7). Normalized channel 
steepness indices indicate greater erosional efficiency at the knickzone 
that drop markedly below and above the knickzone (Fig. 1C). This pat-
tern is corroborated by 10Be-derived denudation rates from either the main 
stem of the Lancang River or its tributaries (Henck et al., 2011), as well 
as apatite (U-Th)/He dating of bedrock samples across the knickzone 
(Fig. 7; Yang et al., 2016; Liu-Zeng et al., 2018). The spatial and temporal 
pattern of river incision rates along the Lancang River indicates that river 
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incision rates since the late Pleistocene are decoupled from other proxies 
of erosion. Moreover, the late Pleistocene river incision rates below the 
knickzone are similar to or even higher than that within the knickzone.

Together with the fact that river incision initiated during the cold, 
glacial periods, this pattern suggests that surface processes related to the 
Pleistocene glacial cycles could have controlled not only the timing of 
river incision but also the spatiotemporal pattern. At present, monsoonal 
moisture along the Lancang valley decreases dramatically upstream, and 
it drops down to 20% at the transition with the high plateau area near 
Deqin (Fig. 1C). This pattern may imply higher water discharge below 
the knickzone. During glacial periods, additional snowmelt runoff may 
have occurred along all the reaches, especially downstream of high mas-
sifs, where higher topography experienced lower temperatures and greater 
proximity to the peak led to greater total precipitation (Bookhagen and 
Burbank, 2010), such as the Yunlong reach, which is primarily located 
below the knickzone. Because strengthened precipitation tends to facilitate 
slope failures by increasing pore pressures in hillslopes (e.g., Pratt et al., 
2002), the increase in sediment supply is often invoked in terms of high 
frequency of landslide activity. Furthermore, because the Lancang valley 
is very narrow at the Yanjing-Weixi knickzone, and it is surrounded by 
high and glaciated mountains, it appears to be prone to ephemeral dam-
ming by glaciers and/or landslides, as observed in other places along the 
margin of the Tibetan Plateau (Montgomery et al., 2004; Ouimet et al., 
2007; Lang et al., 2013; Scherler et al., 2014). When such natural dams 
fail, they can trigger catastrophic outburst floods that have the potential to 
account for very high incision rates in the valley below the knickzone. In 
addition to climatic factors, tectonics may also play a role in modulating 
the behavior of fluvial systems in tectonically active regions, by creating 
differential uplift, local steepening of the river profile, and rapid river 
incision (e.g., Merritts et al., 1994; Hetzel et al., 2006; Wegmann and 
Pazzaglia, 2009), or tilting blocks, regional flattening of the river profile, 
and river aggradation (e.g., Humphrey and Konrad, 2000; Wang et al., 
2014). Further work is needed to evaluate how local to regional tectonic 
events have contributed to the spatiotemporal pattern of river incision 
rates along the Lancang River in southeast Tibet.

CONCLUSION

This study reports for the first time remarkably well-preserved fluvial 
terraces along three reaches of the Lancang River in the high-relief region 
of southeast Tibet. Episodic river aggradation occurred at >120–100 ka, 
90–70 ka, 25–15 ka, and <9 ka, followed by periods of incision that ini-
tiated at ca. 100 ka, ca. 45 ka, ca. 15 ka, and ca. 6 ka, respectively. This 
timing indicates that alternating periods of aggradation and incision were 
controlled by orbital-driven changes in monsoon strength. Rates of river 
incision since the late Pleistocene have varied between <0.5 and 2.8 mm/
yr, and they are more than an order of magnitude higher than million-year 
time scale erosion rates derived from bedrock thermochronologic data 
and thousand-year time scale denudation rates from cosmogenic 10Be con-
centrations in modern river sand. This difference and the spatiotemporal 
patterns of incision suggest that erosion is not constant, either in space or 
time, and it is sensitive to measurement time scales and dominant surface 
processes. Notably, we observed that the river incision rate since the late 
Pleistocene below the knickzone is higher than that at the knickzone, and 
this is in contrast to the spatial pattern of other erosion proxies, which 
show a maximum value at the knickzone. In addition, the rates of river 
incision since the Holocene at the knickzone decrease through time. Our 
results thus demonstrate that climatic changes in the big drainage system 
of the Lancang River modulate the spatial and temporal pattern of river 
incision in southeast Tibet.
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