Experiments on Turbulent Viscosity in Planetary Cores

Daniel Brito1, Jonathan Aurnou2 and Philippe Cardin1
1 LGIT, Observatoire de Grenoble, France
2 DTM, Carnegie Institution of Washington, USA
(email: Daniel.Brito@obs.ujf-grenoble.fr; jona@ess.ucla.edu; Philippe.Cardin@obs.ujf-grenoble.fr)

Introduction:
- Spherical shell spin-up experiments deduce turbulent viscosity in convecting fluid, relevant to the dynamics of planetary cores
- Doppler velocimetry measures large-scale and local, turbulent flow fields
- Novel technique quantitatively characterizes turbulent processes in rotating fluids
- Extrapolated experimental results suggest, controversially, large effective viscosity values for planetary core fluids

Experimental Set-up:
- Laminar Spin-Up in a Sphere:
 \[u_0(s,t) = s \Delta \Omega \exp \left(- \frac{E^{-1/2} \Omega^{-1} (1 - s^2)^{3/4}}{t} \right) \]
 Greenspan, 1968

 - \(\Delta \Omega \) = azimuthal velocity; \(s \) = cylindrical radius; \(t \) = time;
 - \(\Omega \) = change in rotation rate; \(E \) = Ekman number
 - \(v = v(x,y) \) where \(v \) = kinematic viscosity, \(\Omega \) = rotation rate
 - \(R = \) fixed spherical shell radius

 - Spin-up timescale varies as \(v^{-1/2} \)
 - Varies in space only as a function of cylindrical radius \(s \)

Isotropical Spin-Up Results:
- Upper Left: Doppler velocity vs. beam distance and time
- Lower Left: Exponential spin-up behavior at fixed beam distance
- Right: Exponential spin-up time vs. cylindrical radius
- Doppler measurements fit Greenspan's theory: inversion matches fluid viscosity to within 2%

Isotropical Spin-Up: 150 to 190 rpm

Coconvective Spin-Up Results:
- Upper Left: Doppler velocity vs. beam distance and time
- Lower Left: Spin-up response at fixed beam distances
- Right: Exponential spin-up time vs. cylindrical radius
- Greenspan's theory explains measurements but with an EFFECTIVE VISCOSITY ~40% greater than viscosity at average convecting fluid temperature

Effective Viscosity Inversions:
- Right: Effective viscosity deduced from convective spin-up experiments vs. local Reynolds number, \(Re \), which parameterizes convective turbulence in the bulk of the fluid
- \(Re \) from experiments of Aubert et al. (2001), made using same apparatus
 - Effective viscosity increases by more than 50% over molecular viscosity values
 - Quasilinear fit between effective viscosity and \(Re \), in agreement with Kolmogorov's theory of turbulence

Implications for Planetary Cores:
- Extrapolating effective viscosity results to Earth's core, where \(Re \sim 10^8 \), implies \(\nu_{\text{effective}} \sim 10^6 \) \(\nu \sim 1 \) m²/s
- Suggests turbulent values of Ekman \(E \sim 10^{-9} \) and of magnetic Prandtl \(Pm \sim 1 \) in planetary cores
- In geostrophic flows, the effective viscosity in the Ekman boundary layers increases with turbulence in the bulk of the fluid